期刊文献+

双耦合非线性薛定谔型方程的怪波解 被引量:1

Rogue wave solutions of dual coupled nonlinear Schrdinger equation
下载PDF
导出
摘要 通过推广的达布变换方法给出双耦合非线性薛定谔方程的怪波解。在同一谱参数下,对基于规范变换的达布变换进一步推广,得到二阶达布变换;从种子解出发,利用代数运算得到方程的单怪波解及双怪波解。最后对怪波解的三维图像以及密度图象进行分析,阐释了怪波在海洋中出现毫无征兆,衰退迅速的现象。 The rogue wave solutions of the dual coupled nonlinear Schrdinger equation are obtained through the generalized Darboux transformation method. The Darboux transformation is generalized based on the gauge transformation,and the two-fold Darboux transformation can be got by summarizing under the same spectrum parameter. Starting from the seed solution,the one-order and twoorder rogue wave solutions are gained through algebraic operation. Finally the three-dimensional image and density images of the rogue wave solutions are analyzed,interpreting the phenomenon that rogue wave appears with no sign and declines rapidly.
出处 《北京信息科技大学学报(自然科学版)》 2015年第6期92-96,共5页 Journal of Beijing Information Science and Technology University
关键词 达布变换 推广的达布变换 双耦合非线性薛定谔方程 怪波解 Darboux transformation generalized Darboux transformation dual coupled nonlinear Schrodinger equation rogue wave solutions
  • 相关文献

参考文献14

  • 1Bludov Y V, Konotop V V, Akhmediev N. Matter rogue waves [ J]. Physical Review A, 2009, 80(3): 036601. 被引量:1
  • 2Ruderman M S. Freak waves in laboratory and space plasmas [ J ]. The European Physical Jour, 2010, 185:57-66. 被引量:1
  • 3Yah Z Y. Financial rogue waves [J]. Commun, Theor. Phys., 2010, 54: 947. 被引量:1
  • 4Solli D R, Ropers C, Koonath P, et al. Optical rogues wave [J].Nature, 2007, 450 : 1054. 被引量:1
  • 5赵立臣..玻色-爱因斯坦凝聚体中的孤子、怪波等局域波研究[D].中国科学技术大学,2013:
  • 6Akhmediev N, Ankiewicz A, Soto-Crespo J M, et al. Universal triangular spectra in parametrically-driven systems [ J ]. Physics Letters A, 2011, 375:775-779. 被引量:1
  • 7Ankiewicz A, Sot-Crespo J M, Akhmediev N. Rogue waves and rational solutions of the Hirota equation [ J ]. Physical Review E, 2010, 81: 046602. 被引量:1
  • 8Xu S W, He J S. The Darboux transformation of the derivative nonlinear Schrt~dinger equation [ J]. Journal of Physics A : Mathematical and Theoretical, 2011, 44: 305203. 被引量:1
  • 9Lax P D. Integrals of nonlinear equations of evolution and solitary waves [J]. Comm. Pure Appl. Math, 1968, 21:240 -243. 被引量:1
  • 10Hirota R. Exat soliton of the Kdv equation for multiple collisions of solitons [J].Physics Letters, 1971, 27: 1192-1194. 被引量:1

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部