期刊文献+

基于三阶段蚁群算法的土地利用核查路径规划与目标导航

Three-stage ant colony algorithm for land use inspection routing and objects navigation
原文传递
导出
摘要 针对当前土地利用监管外业核查难以快速、准确地遍历所有待核查地块等问题,进行了土地核查路径规划与目标导航定位技术研究。提出了基于改进蚁群算法的土地核查路径规划与目标导航问题的三阶段求解方法,即"先分群,再搜索阶段最优路径,最后实现全局最优路径规划",将大区域的多辆车路径规划问题简化为小范围单辆车路径规划与目标导航,利用改进蚁群算法求解出土地核查全局最优路径和导航信息。在此基础上对扬州市面积约6 600 km^2范围内580个待核查图斑开展土地核查,利用该算法将外业核查车辆行驶路程由2 250 km缩短为1 6833 km,缩短了252%。精准的目标导航方法较采用商用导航仪提高了工作效率和核查目标导航的准确性。 In view of the problem that it was difficult for land management staffs to fast and accurately find and reach allland parcels need to be inspected in land use inspection work, the technique of land use inspection routing plan and ob-ject navigation was studied. A three-stage ant colony algorithm for land inspection routing plan and target navigation waspresented, i.e. "first, clustering targets, then searching local optimal path, at last realizing global optimum path". Thethree-stage ant colony algorithm simplified multiple vehicle routing and targets navigation in a large area to sole vehiclerouting and targets navigation in a small area, and searched the land supervision global optimal routing and navigation in-formation based on improved ant colony algorithm. The experiment showed that, through surveying 580 pattern spots in 6600 km^2, the method improved vehicle-miles of travel from 2 250 km to 1 683.3 km, shorten by 25.2%. At the sametime this accurate object navigation enhanced work efficiency and veracity if compared to exacting commercial navigatormethod.
出处 《南京林业大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期142-146,共5页 Journal of Nanjing Forestry University:Natural Sciences Edition
基金 国家国土资源公益性行业科研专项项目(201211028-6)
关键词 土地核查 蚁群算法 车辆路径 目标导航 land inspection ant colony algorithm vehicle routing objects navigation
  • 相关文献

参考文献18

  • 1Gupta A,Ravi R.Technical note-approximation algorithms for VRP with stochastic demands[J].Operations research,2012,60(1):123-127. 被引量:1
  • 2Lin C H,Choy K L,Ho GTS,et al.Survey of green vehicle routing problem:past and future trends[J].Expert systems with applications,2014,41(4):1118-1138. 被引量:1
  • 3Suzuki Y.A variable-reduction technique for the fixed-route vehi- cle-refueling problem[J].Computers and industrial engineering,2014,67(1):204-215. 被引量:1
  • 4Bortfeldt A,Homberger J.Packing first,routing second-a heuristic for the vehicle routing and loading problem[J].Computers and operations research,2013,40(3):873-885. 被引量:1
  • 5Figliozzi M A.An iterative route construction and improvement al- gorithm for the vehicle routing problem with soft time windows[J].Transportation research part C:emerging technologies,2010,18(5);668-679. 被引量:1
  • 6Lenstra J K,Kan A R.Complexity of vehicle routing and scheduling problems[J],Networks,1981(11):221-227. 被引量:1
  • 7Laporte G.The vehicle routing problem:An overview of exact and approximate algorithms[J].European journal of operational re- search,1992,59(3):345-358. 被引量:1
  • 8Taillard,Badeau P,Gendrean M,et ai.A tabu search heuristic for the vehicle routing problem with soft time windows[J].Transportation science,1997,31(2):170-186. 被引量:1
  • 9Reed M.An ant colony algorithm for the multi-compartment vehicle routing problem[J].Applied soft computing journal,2014,15:169-176. 被引量:1
  • 10Wu X D.A two stage ant colony optimization algorithm for the ve- hicle routing problem with time windows[J].International journal of advancements in computing technology,2012,4(1):485-491. 被引量:1

二级参考文献96

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部