期刊文献+

快速定位图像尺度和区域的3维跟踪算法 被引量:8

Three dimensional tracking with fast locating of image scale and area
原文传递
导出
摘要 目的传统的2维自然图像的增强现实算法,对模板图像的各个尺度下的整个图像提取特征点并保存到特征点数组中,跟踪阶段对模板图像提取出的所有特征点进行匹配,造成了大量的无效运算,降低了特征匹配的效率。为了解决这个问题,将模板各个尺度的图像进行区域划分,提出了一种快速定位图像尺度和区域的算法,缩小特征匹配的范围,加快3维跟踪的速度。方法预处理阶段,通过对图像金字塔每一尺度图像分成小区域,对模板图像上的特征点进行分层次分区域的管理。在系统实时跟踪阶段,通过计算几何算法快速确定当前摄像机图像所对应的尺度和区域,从而减小了特征匹配的范围。结果该方法大幅度缩小了特征匹配的范围,降低了特征匹配所消耗的时间,与传统算法相比,在模板图像分辨率较大的情况下特征匹配阶段时间可以缩短10倍左右,跟踪一帧图像的时间缩短1.82倍。系统实时跟踪过程中的帧率总体保持在15帧/s左右。结论提出的快速定位图像尺度和区域算法适用于移动设备上对2维自然图像的跟踪,尤其在模板图像分辨率较大的情况下,算法能够显著减小特征匹配的范围,从而提升了实时3维跟踪算法的运行效率。 Objective The traditional augmented reality algorithms for natural image detect and extract the natural features of a template image for multi scales. At the tracking stage the algorithms match the screen features with all of the features ex- tracted from the template image, which produces a large amount of useless computation and reduces the efficiency of feature matching. To solve this problem, this article presents an algorithm which can locate the scale and area of the template im- age fast and accelerate the speed of 3D tracking. Method In the preprocess stage, the image in each scale is partitioned in- to small areas, and the features of the template image are managed according to the scale and area. In the real-time tracking stage, the method locates the scale and area of current camera image quickly using some computation geometry algorithms so that the scope of feature matching is decreased. Result The search field of feature matching, cuts down the time spent by feature matching, compared with the traditional method, the time spent by feature matching is cut short by about 10 times and the time spent by tracking one frame is cut short by 1.82 times when the resolution of template image is high. Theframe rate of the 3d tracking algorithm keeps at 15 frames per second on average. Conclusion Our method can be used to the tracking of natural image on mobile platform, especially when the resolution of image is high, the method can narrow the search field of image scale and area and promote the efficiency of real-time 3d tracking algorithm.
出处 《中国图象图形学报》 CSCD 北大核心 2016年第1期114-121,共8页 Journal of Image and Graphics
基金 国家高技术研究发展计划(863)基金项目(2013AA013702)~~
关键词 增强现实 3维跟踪 特征匹配 移动平台 快速定位 模板图像 augmented reality three dimensional tracking feature matching mobile platform fast locating template- image
  • 相关文献

参考文献13

  • 1林倞,杨珂,王涌天,刘越.移动增强现实系统的关键技术研究[J].中国图象图形学报,2009,14(3):560-564. 被引量:40
  • 2宋春雨,何汉武,陈和恩,王壮炼.Android的无标识增强现实注册算法实现[J].计算机仿真,2014,31(8):432-437. 被引量:4
  • 3Wagner D, Reitmayr G, Mulloni A, et al. Real-Time detection and tracking for augmented reality on mobile phones [ J ]. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(3) : 355-368. [DOI: 10. 1109/TVCG. 2009.99]. 被引量:1
  • 4Lowe D G. Distinctive image features from scale-invariant key- points [ J ]. International Journal of Computer Vision, 2004, 60(2) : 91-110. [DOh 10. 1023/B:VISI. 0000029664. 99615.94]. 被引量:1
  • 5Ozuysal M, Fua P, Lepetit V. Fast keypoint recognition in ten lines of code [ C ]//Proceedigs of IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis: IEEE Xplore, 2007 : 1-8 [DOI : 10. 1109/CVPR. 2007. 383123 ]. 被引量:1
  • 6Yang X, Cheng K T. LDB : an ultra-fast feature for scalable Aug- mented Reality on mobile devices[ C ]//IEEE International Sym- posium on Mixed and Augmented Reality. Atlanta: IEEE Xplore, 2012:49-57. [DOI : 10. 1109/ISMAR. 2012. 6402537 ]. 被引量:1
  • 7Calonder M, Lepetit V, Streeha C, et al. BRIEF: binary robust independent elementary features [ C ]//Proceedings of the Euro- pean Conference on Computer Vision. Berlin Heidelberg: Spring- er 2010:778-792. [DOI : 10. 1007/978-3-642-15561-1_56]. 被引量:1
  • 8Ufkes A, Fiala M. A markerless augmented reality system for mo- bile Devices [ C ]//Proceedings of International Conference on Computer and Robot Vision. Regina: IEEE Xplore, 2013:226- 233. [DOI: 10. 1109/CRV. 2013.5]. 被引量:1
  • 9Rublee E, Rabaud V, Konolige K, et al. ORB: an efficient al- ternative to SIFT or SURF[ C ]//Proceedings of IEEE Internation- al Conference on Computer Vision. Barcelona: IEEE Xplore, 2011 : 2564-2571 [ DOI:10.1109/ICCV. 2011. 6126544]. 被引量:1
  • 10Muja M, Lowe D G. Fast matching of binary features [ C ]//Pro- eeedings of th 9th Conference on Computer and Robot Vision.Toronto: IEEE Xplore, 2012: 404-410. [DOI: 10.1109/ CRV. 2012.60]. 被引量:1

二级参考文献14

  • 1林倞,王涌天,刘越,郑伟.基于图像匹配的户外环境注册算法[J].中国图象图形学报,2005,10(9):1146-1151. 被引量:4
  • 2王涌天,林倞,刘越,郑伟.亦真亦幻的户外增强现实系统——圆明园的数字重建[J].中国科学基金,2006,20(2):76-80. 被引量:43
  • 3Azuma R, Bailtot Y, Behringer R, et al. Recent advances in augmented reality[ J]. IEEE Computer Graphics and Applications, 2001, 21(6) :34-47. 被引量:1
  • 4Hollerer T, Feiner S, Terauchi T, et al. Exploring MARS: Developing indoor and outdoor user interfaces to a mobile augmented reality system [ J ]. Computers and Graphics, 1999, 23 ( 6 ) : 779-785. 被引量:1
  • 5Steven Feiner, Blair Macintyre, Tobias Hollerer,et al. A touning the machine: Prototyping 3D mobile augmented reality systems for exploring the urban environment [ J ]. Personal and Ubiquitous Computing, 1997, 12-1(4) :208-217. 被引量:1
  • 6Sowizral Henry A, Deering Michael F. The Java 3D API and Virtual Reality[ M]. Palo Alto,CA,USA:Sun Microsystems, 1999. 被引量:1
  • 7Lin Liang, Liu Yue, Zheng Wei, et al. Registration algorithm based on image matching for outdoor AR system with fixed viewing position [ J]. IEE Proceedings Vision, Image & Signal Processing, 2006, 153(1) :57-62. 被引量:1
  • 8Reddy B, Chatterji B. An FFT-based technique for translation, rotation, and scaleinvariant image registration [ J]. IEEE Transactions on Image Processing, 1996, 5(8) : 1266-1271. 被引量:1
  • 9Liu Yue, Wang Yong-tian, Li Yu, et al. Key issues for AR-based digital reconstruction of Yuanmingyuan garden [ J ] . Presence: Teleoperators and Virtual Environments, 2006, 15 (3) :336-340. 被引量:1
  • 10苏宏,康波.混合跟踪技术在增强现实系统中的应用[J].计算机工程,2009,35(4):268-270. 被引量:8

共引文献42

同被引文献53

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部