期刊文献+

基于SVR模型的中文领域术语自动抽取研究——面向图书情报领域 被引量:6

Research on Chinese Automatic Terminology Extraction Based on SVR Model
原文传递
导出
摘要 [目的/意义]术语是本体的重要组成部分,术语自动抽取是本体自动构建的基础,文章采用回归的方法对未登录词进行概率(某个数值(组合)对应的候选词集合中术语的概率)预测,获得该词可能为术语的概率。[方法/过程]文章结合语言学和统计方法,通过构建术语库提取术语抽取模板来抽取候选术语,此外,通过引入回归的方法,将术语抽取问题转化为对词语成为术语的概率的预测问题。[结果/结论]提出的方法最后通过实验验证了其有效性。 [ Purpose/significance ] Terminology is one of the most important parts of ontology. Automatic terminology extraction is the basis of automatic ontology construction. This paper adopts the method of regression to predict the probability of unknown words ( a value or combined values corresponds to the set of candidate words in terms of probability) . [ Method/process] The pa- per focuses on the combination of linguistics and statistical methods to extract the candidates based on rule-based method. By using the method of regression, the paper takes the terminology extraction problem as the prediction issue of terminology probability. [ Result/conclusion ] The experiment verifies the validation of the proposed method.
作者 蒋婷 孙建军
出处 《情报理论与实践》 CSSCI 北大核心 2016年第1期24-31,15,共9页 Information Studies:Theory & Application
基金 国家社会科学基金重大招标项目"面向学科领域的网络信息资源深度聚合与服务研究"的成果 项目编号:12&ZD221
关键词 支持向量回归机 本体构建 本体学习 术语抽取 SVR ontology architecture ontology learning terminology extraction
  • 相关文献

参考文献36

  • 1EARL L L. Experiments in automatic extracting and indexing [J].Information Storage and Retrieval, 1970, 6 (4): 313-330. 被引量:1
  • 2BOURIGAULT D. Surface grammatical analysis for the extrac- tion of terminological noun phrases [ C ] //Proceedings of the 14th Conference on Computational Linguistics-Volume 3. Asso- ciation for Computational Linguistics, 1992 : 977-981. 被引量:1
  • 3JUSTESON J S, KATZ S M. Technical terminology: some lin- guistic properties and an algorithm for identification in text [J]. Natural Language Engineering, 1995, 1 (1) : 9-27. 被引量:1
  • 4DAGAN I, CHURCH K. Termight: identifying and translating technical terminology [ C ] //Proceedings of the Fourth Confer- ence on Applied Natural Language Processing. Association for Computational Linguistics, 1994 : 34-40. 被引量:1
  • 5FRANTZI K T, ANANIADOU S. Automatic term recognition u- sing contextual cues [ C] //Proceedings of 3rd DELOS Work- shop, 1997. 被引量:1
  • 6SABOU M, WROE C, GOBLE C, et al. Learning domain on- tologies for web service descriptions: an experiment in bioinfor- matics [ C ] //Proceedings of the 14th International Conference on World Wide Web. ACM, 2005: 190-198. 被引量:1
  • 7DAILLE B. Study and implementation of combined techniques for automatic extraction of terminology [ J ]. The Balancing Act: Combining Symbolic and Statistical Approaches to Lan- guage, 1996, 1: 49-66. 被引量:1
  • 8COHEN J D. Highlights: language- and domain-independent automatic indexing terms for abstracting [ J ]. JASIS, 1995, 46 (3): 162-174. 被引量:1
  • 9BOUMA G, FAHMI I, MUR J, et al. Using syntactic knowl- edge for QA [ M ] //Evaluation of Muhilingual and Multi-mo- dal Information Retrieval. Springer Berlin Heidelberg, 2007: 318-327. 被引量:1
  • 10KURZ D, XU F. Text mining for the extraction of domain rele- vant terms and term collocations [ C ] //Proceedings of the In- ternational Workshop on Computational Approaches to Colloca-tions. 2002. 被引量:1

二级参考文献68

共引文献70

同被引文献141

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部