摘要
三角曲面和渐进迭代逼近在散乱点数据的拟合及逆向工程中有重要应用,研究了四阶T-Bézier三角曲面的带权渐进迭代算法。给出了带权渐进迭代算法,分析了算法的收敛性,并基于1-范数、2-范数和∞-范数分别给出了带权渐进迭代算法的逼近误差;针对不同的控制顶点赋予不同权值以加快收敛速度,给出了推广的带权渐进迭代算法;数值实例说明了算法的有效性及其应用。
Triangular surface and progressive iterative algorithm have important application in fitting scatted data points and reverse engineering, this paper studies weighted progressive iterative algorithm for fourth-order triangular T-Bézier surface. It presents the weighted progressive iterative algorithm and analyzes the convergence of this algorithm, and the weighted progressive iterative algorithm approximation errors in L_1-norm、L_2-norm and L_∞-norm are calculated. It also presents the extended weighted progressive iterative algorithm, according to that different control points give different weight factor to speed up the convergence speed. Some numerical examples are given to illustrate the effectiveness and its application of this algorithm.
出处
《计算机工程与应用》
CSCD
北大核心
2016年第2期191-196,共6页
Computer Engineering and Applications
基金
安徽省高等学校省级自然科学研究项目(No.KJ2012B089
No.KJ2012B088)
安庆师范学院青年科研基金项目(No.KJ201018
No.KJ201017)