期刊文献+

一种启发式的局部随机特征选择算法 被引量:5

A kind of heuristic local random feature selection algorithm
下载PDF
导出
摘要 深入研究大间隔从样本间相似性、信息熵从特征间相关性进行特征选择的特点,提出一种有效地融合这两类方法的特征选择算法。采用Relief算法得到一个有效的特征排序,进而将其划分为若干区段。设置各区段的采样率,以对称不确定性作为启发因子获得每个局部随机子空间的特征子集。将获得的所有特征子集作为最终的特征选择结果。实验结果表明该方法优于一些常用的特征选择算法。 Two kinds of feature selection algorithms are further studied, i.e., the characteristic of large margin is the similarity between samples and the entropy is the correlation between features, an effective feature selection algorithm via fusing large margin and information entropy is proposed. The features are ranked by employing the algorithm of Relief, and the ranked feature list is partitioned into a few sections. Based on the heuristic factor of symmetric uncertainty, the feature subset in each local random subspace is obtained by setting the sampling rate of each section. The final feature subset is obtained by merging all feature subsets. Experimental results show that the proposed algorithm is superior to several feature selection algorithms.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第2期170-174,185,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61303131 No.61379021) 福建省自然科学基金(No.2013J01028) 漳州市科技项目(No.ZZ2013J04)
关键词 特征选择 大间隔 对称不确定性 局部随机子空间 feature selection large margin symmetric uncertainty local random subspace
  • 相关文献

参考文献16

  • 1Dash M,Liu H.Feature selection for classification[J].Intelligent Data Analysis,1997,1:131-156. 被引量:1
  • 2Guyon I,Elisseeff A.An introduction to variable and feature selection[J].Journal of Machine Learning Research,2003,3:1157-1182. 被引量:1
  • 3Zhu W Z,Si G Q,Zhang Y B,et al.Neighborhood effective information ratio for hybrid feature subset evaluation and selection[J].Neurocomputing,2013,99:25-37. 被引量:1
  • 4Liu H,Yu L.Toward integrating feature selection algorithms for classification and clustering[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(4):491-502. 被引量:1
  • 5Kohavi R,John G.Wrapper for feature subset selection[J].Artif Inte,1997,97:234-273. 被引量:1
  • 6Gilad-Bachrach R,Navot A,Tishby N.Margin based feature selection-theory and algorithms[C]//Proceedings of the21st International Conference on Machine Learning,2004:40-48. 被引量:1
  • 7Sun Y,Li J.Iterative RELIEF for feature weighting:algorithms,theories,and applications[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(6):1035-1051. 被引量:1
  • 8杨明,王飞.一种基于局部随机子空间的分类集成算法[J].模式识别与人工智能,2012,25(4):595-603. 被引量:7
  • 9Crammer K,Gilad-Bachrach R,Navot A.Margin analysis of the LVQ algorithm[C]//Advances in Neural Information Processing System,La Jolla,CA,2002,14:462-469. 被引量:1
  • 10Vapnik V.The nature of statistical learning theory[M].New York,USA:Springer-Verlag,1995. 被引量:1

二级参考文献27

  • 1杨明.一种基于改进差别矩阵的属性约简增量式更新算法[J].计算机学报,2007,30(5):815-822. 被引量:112
  • 2Yang Yiming,Pedersen J O.A comparative study on feature selection in text categorization[C]//Proc of the 14th International Conference on Machine Learning ICML97,1997:412-420. 被引量:1
  • 3Karypis G,Han E.Fast supervised dimensionality reduction algorithm with applications to document categorization and retrieval[C]// Proc of the 9th ACM International Conference on Information and Knowledge Management CIKM-00.New York,US:ACM Press,2000: 228-233. 被引量:1
  • 4Baker L D,McCallum A K.Distributional clustering of words for text classification[C]//Proc of the 21st Annual International ACM SIGIR, 1998 :96-103. 被引量:1
  • 5谭松波语料库[DB/OL].http://lcc.software.ict.ac.cn/-tansongbo/corpusl.php. 被引量:1
  • 6Jolliffe I T.Principal component analysis[M].New York:Spriger Verlag, 1986. 被引量:1
  • 7Martinez A M,Kak A C.PCA versus LDA[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(2):228-233. 被引量:1
  • 8Yu L,Liu H.Efficient feature selection via analysis of relevance and redundancy[J].Journal of Machine Learning Research,2004:1205-1224. 被引量:1
  • 9Zhang D,Chen S,Zhou Z.Constraint score:A new filter method for feature selection with pair-wise constraints[J].Pattern Recognition,2008,41:1440-1451. 被引量:1
  • 10Kohavi G,John H.Wrappers for feature subset selection[J].Artificial Intelligence,1997:273-324. 被引量:1

共引文献55

同被引文献29

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部