期刊文献+

改进VFPSO算法于WSN节点随机部署中的应用 被引量:14

Random deployment of sensor nodes using enhanced VFPSO algorithm
下载PDF
导出
摘要 无线传感器网络(Wireless Sensor Network,WSN)节点的随机部署一直是WSN覆盖的核心问题之一。尽可能提升WSN的覆盖质量对延长网络的生命周期起着重要的作用。虚拟力-粒子群优化(Virtual Force Particle Swarm Optimization,VFPSO)算法因虚拟力的引入使PSO算法的优化性能有所提升,但PSO算法的早熟问题仍未得到有效改善。在VFPSO算法的基础上提出了一种维度选择机制,主要目的在于改善VFPSO算法中后期的优化能力。仿真结果表明,将采用维度选择机制后的VFPSO算法应用于WSN的覆盖优化中,覆盖率较其他优化算法有3%~5%的提升。 The Wireless Sensor Network(WSN)coverage optimization via the dynamic deployment of sensor nodes is crucial to enhancing the WSN monitoring quality as well as prolonging the network lifetime. Among the coverage optimization techniques, Virtual Force Particle Swarm Optimization(VFPSO)offers improved performance over the standard Particle Swarm Optimization(PSO)algorithm through the introduction of the Virtual Force(VF)concept. But the VFPSO algorithm still exhibits the problem of premature convergence. In this paper, a mechanism called dimension selection is incorporated into VFPSO to further improve its performance. Simulation results show that the newly proposed algorithm improves the WSN coverage rate by an amount of 3%~5%, compared with the other benchmark methods.
作者 宋明智 杨乐
出处 《计算机工程与应用》 CSCD 北大核心 2016年第2期141-145,204,共6页 Computer Engineering and Applications
关键词 无线传感器网络(WSN)覆盖优化 节点随机部署 虚拟力-粒子群优化(VFPSO)算法 维度选择 覆盖率 Wireless Sensor Network(WSN)coverage optimization random deployment of sensor nodes Virtual Force Particle Swarm Optimization(VFPSO)algorithm dimension selection coverage rate
  • 相关文献

参考文献17

  • 1Jin X,Liang Y Q,Tian D P,et al.Particle swarm optimization using dimension selection methods[J].Applied Mathematics and Computation,2013,219:5185-5197. 被引量:1
  • 2Yick J,Mukherjee B,Ghosal D.Wireless sensor network survey[J].Computer Networks,2008,52:2292-2330. 被引量:1
  • 3Pilloni V,Atzori L.Deployment of distributed applications in wireless sensor networks[J].Sensors,2011,11:7395-7419. 被引量:1
  • 4Wang X,Wamg S,Ma J J.Dynamic deployment optimization in wireless sensor networks[J].Lecture Notes in Control and Information Sciences,2006,344:182-187. 被引量:1
  • 5宋明智,杨乐.基于改进自适应PSO算法的WSN覆盖优化方法[J].计算机应用研究,2013,30(11):3472-3475. 被引量:17
  • 6Kennedy J,Eberhart R C.Particle swarm optimization[C]//IEEE International Conference on Neural Networks,1995,4:1942-1948. 被引量:1
  • 7Shi Y H,Eberhart R C.A modified particle swarm optimizer[C]//Proc of IEEE Conference on Evolutionary Computation,1998. 被引量:1
  • 8林丹,李敏强,寇纪凇.进化规划和进化策略中变异算子的若干研究[J].天津大学学报(自然科学与工程技术版),2000,33(5):627-630. 被引量:24
  • 9Zou Y,Chakrabarty K.Sensor deployment and target localization based on virtual forces[C]//IEEE INFOCOM,2003:1293-1303. 被引量:1
  • 10Heo N,Varshney P K.A distributed self spreading algorithm for mobile wireless sensor networks[J].Wireless Communication Network,2003:1597-1602. 被引量:1

二级参考文献19

  • 1张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:224
  • 2俞欢军,张丽平,陈德钊,胡上序.基于反馈策略的自适应粒子群优化算法[J].浙江大学学报(工学版),2005,39(9):1286-1291. 被引量:29
  • 3张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:138
  • 4胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 5 Baeck T.Evolutionary algorithms intheory and practice[M].Pi scataway,NJ:IEEE Press,1995. 被引量:1
  • 6 Yao X,Liu Y.Fast evolutionary programming[A].L.J.Fogel,ed. Proceedings ofthe Fifth Annual Conference on Evoltionary Programming[C].Cam bridge:MITPress,1996,441~450. 被引量:1
  • 7 Yao X,Liu Y.Fast evolutionary strategies[A].P.J.Angeline,e d.Proceedingsof the Sixth Annual Conference on Evolutionary Programming[C].Berlin:Springer,1997,151~161. 被引量:1
  • 8 Gehlhaar D K,F ogel D B.Two new mutation operators for enhanced search andoptimization in evol utionary programming[A].B.Biosacchi,J.Bezdek andD.B.Fogel,eds.Proceedings o f SPIE[C].Piscataway,NJ:IEEE Press,1996,3165:260~269. 被引量:1
  • 9 Beyer G H,Fogel D B.A note on the escape probabilities for two a lternativemethods of selection under gaussian mutation[A].P.J.Angeline,ed.P roceedings of theSixth Annual Conference on Evolutionary Programming[C].Ber lin:Springer,1997,265~274. 被引量:1
  • 10 Eicker F.Sums if independent squard Cauchy variables grow quadratically:Applications[J].Sankhya A,1985,47(3f):678~691. 被引量:1

共引文献39

同被引文献77

引证文献14

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部