期刊文献+

基于AR-SRCKF的SINS/GPS深耦合抗转发式干扰研究 被引量:1

Research on countermeasure for repeater jamming in deeply coupled SINS/GPS system based on AR-SRCKF
下载PDF
导出
摘要 转发式干扰转发真实的卫星信号导致伪距信息错误,能不被察觉地使捷联惯导系统(SINS)和全球定位系统(GPS)的深耦合组合导航解算错误。根据深耦合中信号处理的特点,将错误的伪距视为粗差,提出一种基于自适应抗差平方根容积卡尔曼滤波(AR-SRCKF)的融合算法。该方法采用自适应抗差滤波作为算法的框架,提高系统对转发式干扰的鲁棒性,同时为了避免线性化误差造成滤波性能的下降,采用平方根容积卡尔曼滤波(SRCKF)解决非线性滤波问题以及确保协方差阵的对称性和半正定性。最后,深耦合系统下的仿真分析验证了其对转发式干扰具有良好的鲁棒性。 Repeater jamming transmits authentic satellite signals and results in error in pseudo range, thus making deeply coupled SINS/GPS system resolve incorrectly without being detected. On the basis of characteristic of signal processing in deep integration and treating error in pseudo range as gross error, the Adaptive Robust Square-Root Cubature Kalman Filter(AR-SRCKF)is proposed. The method utilizes adaptive robust filter as the frame of the algorithm to improve system robustness to repeater jamming. Meanwhile, for avoiding filter performance decreasing caused by linearization, the method uses squre-root cubature Kalman filter to solve the non-linear filtering problem and make sure the symmetry and positive semidefinite of the covariance matrix. Finally, simulation and analysis under deep integrated system validates its good robustness to repeater jamming.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第2期31-35,共5页 Computer Engineering and Applications
基金 电子科技大学中央高校基本科研业务费(No.ZYGX2012J150)
关键词 抗差估计 自适应滤波 容积卡尔曼滤波 深耦合 转发式干扰 robust estimation adaptive filtering cubature Kalman filter deep integration repeater jamming
  • 相关文献

参考文献15

  • 1张琳..卫星导航系统接收机抗干扰关键技术研究[D].哈尔滨工业大学,2007:
  • 2Petovello M G,Lachapelle G.Comparison of vector-based software receiver implementations with application to ultratight GPS/INS integration[C]//ION GNSS,Fort Worth TX,2006:1790-1799. 被引量:1
  • 3杨元喜著..自适应动态导航定位[M].北京:测绘出版社,2006:324.
  • 4Huber P J.Robust estimation of a location parameter[J].Annals of Mathematical Statistics,1964,35(1):73-101. 被引量:1
  • 5吴江飞,黄珹.非线性自适应抗差滤波定轨算法[J].武汉大学学报(信息科学版),2008,33(2):187-190. 被引量:6
  • 6Arasaratnam I,Haykin S.Cubature Kalman filters[J].IEEE Transactions on Automatic Control,2009,54(6):1254-1269. 被引量:1
  • 7Arasaratnam I,Haykin S,Hurd T R.Cubature Kalman filtering for continuous-discrete systems:theory and simulations[J].IEEE Transactions on Signal Processing,2010,58(10):4977-4993. 被引量:1
  • 8Badu R,Wang J.Ultra-tight GPS/INS/PL integration:a system concept and performance analysis[J].GPS Solutions,2009,13(1):75-82. 被引量:1
  • 9Gao G,Lachapelle G.A novel architecture for ultra-tight HSGPS-INS integration[J].Journal of Global Positioning Systems,2008,7(1):46-61. 被引量:1
  • 10鲍其莲,周媛媛.基于UKF的GPS/SINS伪距(伪距率)组合导航系统设计[J].中国惯性技术学报,2008,16(1):78-81. 被引量:20

二级参考文献41

  • 1吴江飞,黄珹.分布逼近的卡尔曼滤波及其在星载GPS卫星定轨中的应用[J].天文学报,2005,46(1):55-61. 被引量:10
  • 2李济生.人造卫星精密轨道确定[M].北京:解放军出版社,1995.3-13. 被引量:47
  • 3许其凤.GPS卫星精密导航与定位[M].北京:解放军出版社,1989.104-167. 被引量:1
  • 4杨元喜.动态系统的抗差Kaliman滤波[J].测绘学院学报,1997,14:79-84. 被引量:2
  • 5Yang Yuanxi, He Haibo, Xu Guochang. Adaptively Robust Filtering for Kinematic Geodetic Position [J]. Journal of Geodesy, 2001, 75(2): 109-116. 被引量:1
  • 6Mehra R K. On the Identification of Variances and Adaptive Kalman Filtering[J]. IEEE Transactions on Automatic Control, 1970, AC-15:175-184. 被引量:1
  • 7Mohamd A H, Schurz K P. Adaptive Kalman Filtering for INS/GPS[J]. Journal of Geodesy, 1999, 73:193-203. 被引量:1
  • 8Wang J, Steward M P, Tsakiri M. Adaptive Kalman Filtering for Integration of GPS with GLONASS and INS[M]. Birmingham: Springer, 1999:325. 被引量:1
  • 9van der Merwe R, Wan E A. The Square-Root Unscented Kalman Filter for State and Parameter-Estimation[C]. ICASSP'01, Oregon Graduate Inst of Sci and Technol, Beaverton, OR, 2001. 被引量:1
  • 10Yang Yuanxi, Song Lijie, Xu Tianhe. Robust Estimator for Correlated Observations Based on Bifactor E- quivalent Weights [J]. Journal of Geodesy, 2002,76 (6/7) :353-358. 被引量:1

共引文献82

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部