期刊文献+

月壤水平开挖推剪阻力影响因素离散元数值分析 被引量:6

Discrete element numerical analysis of factors affecting horizontal pushing resistance in lunar ground excavation
下载PDF
导出
摘要 通过引入考虑范德华力和抗转动作用的月壤微观接触模型,采用离散单元法模拟月壤水平推剪试验(简化的土-开挖设备间相互作用模型),对月壤推剪破坏机制进行研究,分析了推剪深度、倾角和速率的影响,为真实月面环境下开挖提供参考。结果表明:推剪过程中推剪阻力首先随推剪位移增加至峰值,而后下降并趋于稳定;随推剪位移的进一步发展,推墙前方土体堆积,推剪阻力缓慢回升,推墙前土体受扰动区范围逐渐增大;当推剪面竖直时,随着推剪深度增加,推剪阻力和能量消耗增大,前方受扰动土体范围增大,破坏面为直平面;相同推剪深度下,推剪倾角越大,推剪阻力和能量消耗越小,前方扰动土体范围越小,破坏面为直平面;推剪速率越大,推剪阻力和能量消耗增大,前方扰动土体范围越大。由于月面开挖时推剪反力由机械与月面摩擦提供,考虑到开挖机械重量受空间运输能力限制,建议采用对推力(机械重量)要求低的浅层、倾斜、慢速开挖,适用于月面早期建设活动。 A discrete element method(DEM) contact model for lunar soil taking rolling resistance and van der Waals forces into consideration is used to simulate the horizontal pushing test, which is a simplified machine-lunar soil interaction problem. The soil failure mechanism and the effects of excavation blade depth, inclination and speed are analyzed; and some suggestions for real lunar excavation are offered. The results show that the pushing resistance increases with pushing displacement to a peak state rapidly and then tends to be stable after a sharp declination. With the accumulation of soil heap in front of the blade, the pushing resistance increases slowly again. The pushing resistance, energy consumption and the affected area are greater under larger pushing depth while the slip surfaces are all straight. As the pushing inclination increases, the pushing resistance, energy consumption and the affected area decrease; and the slip surface remains straight. The pushing resistance, energy consumption and affected area increase with the speed. Since the pushing resistance is provided by frictional force between the machine and lunar ground, which is proportional to the weight of an excavator; it is recommended that shallow, inclined and slow excavation should be used in early-stage lunar base construction. This scheme is advantageous in its low demand for the mass of the excavation machine, thus reducing the mass launched from the earth to the moon.
出处 《岩土力学》 EI CAS CSCD 北大核心 2016年第1期229-236,共8页 Rock and Soil Mechanics
基金 国家自然科学基金项目(No.51179128) 国家杰出青年科学基金项目(No.51025932)~~
关键词 月壤 离散单元法 水平推剪试验 抗转动作用 范德华力 lunar soil discrete element method horizontal pushing test particle rolling resistance Van der Waals forces
  • 相关文献

参考文献21

  • 1HETTIARATCHI D R P,REECE A R.Symmetrical three-dimensional soil failure[J].Journal of Terramechanics,1967,4(3):45-67. 被引量:1
  • 2GODWIN R J,SPOOR G.Soil failure with narrow tines[J].Journal of Agricultural Engineering Research,1977,22(3):213-228. 被引量:1
  • 3MCKYES E,ALI O S.The cutting of soil by narrow blades[J].Journal of Terramechanics,1977,14(2):43-58. 被引量:1
  • 4KING R H,VAN SUSANTE P,GEFREH M A.Analytical models and laboratory measurements of the soil-tool interaction force to push a narrow tool through JSC-1A lunar simulant and Ottawa sand at different cutting depths[J].Journal of Terramechanics,2011,48(1):85-95. 被引量:1
  • 5GREEN A,ZACNY K,PESTANA J,et al.Investigating the effects of percussion on excavation forces[J].Journal of Aerospace Engineering,2012,26(1):87-96. 被引量:1
  • 6BOLES W W,SCOTT W D,CONNOLLY J F.Excavation force in reduced gravity environment[J].Journal of Aerospace Engineering,1997,10(2):99-103. 被引量:1
  • 7BOLES W W,CONNOLLY J F.Lunar excavation research[C]//Engineering,Construction,and Operations in Space V.Albuquerque:[s.n.],1996:1903-1906. 被引量:1
  • 8ABO-ELNOR M,HAMILTON R,BOYLE J T.3D dynamic analysis of soil-tool interaction using the finite element method[J].Journal of Terramechanics,2003,40(1):51-62. 被引量:1
  • 9COETZEE C J,ELS D N J.Calibration of granular material parameters for DEM modelling and numerical verification by blade–granular material interaction[J].Journal of Terramechanics,2009,46(1):15-26. 被引量:1
  • 10SHMULEVICH I,ASAF Z,RUBINSTEIN D.Interaction between soil and a wide cutting blade using the discrete element method[J].Soil and Tillage Research,2007,97(1):37-50. 被引量:1

二级参考文献21

  • 1樊世超,贾阳,向树红,刘闯.月面地形地貌环境模拟初步研究[J].航天器环境工程,2007,24(1):15-20. 被引量:22
  • 2郑永春,王世杰,刘建忠,李泳泉,邹永廖.模拟月壤研制的初步设想[J].空间科学学报,2005,25(1):70-75. 被引量:27
  • 3王淑云,鲁晓兵,时忠民.颗粒级配和结构对粉砂力学性质的影响[J].岩土力学,2005,26(7):1029-1032. 被引量:33
  • 4KLOSKY J L, STURE S, KO H Y, et al. Geotechnical behavior of JSC-1 lunar soil simulant[J]. Journal of Aerospace Engineering, 2000, 13(4): 133 - 138. 被引量:1
  • 5MCKAY D S, CARTER J L, BOLES W W, et al. JSC-I: A new lunar soil simulant[C]// Engineering, Construction, and Operations in Space IV, USA, 1994:857 - 866. 被引量:1
  • 6WILLMAN B M, BOLES W W. Properties of lunar soil simulant JSC-I[J]. Journal of Aerospace Engineering, 1995, 8(2): 77 - 87. 被引量:1
  • 7WILLMAN B M, BOLES W W. Soil-tool interaction theories as they apply to lunar soil simulant[J]. Journal of Aerospace Engineering, 1995, 8(2/2): 88 - 99. 被引量:1
  • 8KANAMORI H, UDAGAWA S, YOSHIDA T, et al. Properties of lunar soil simulant manufactured in Japan[C]// Space 98 Proceedings of the Sixth International Conference and Exposition on Engineering, Construction, and Operations in Space, USA, 1998:462 - 468. 被引量:1
  • 9BUI H H, KOBAYASHI T, FUKAGAWA R, et al. Numerical and experimental studies of gravity effect on the mechanism of lunar excavations[J]. Journal of Terramechanics, 2009, 46: 115 - 124. 被引量:1
  • 10ZHENG Y C, WANG S J, OUYANG Z Y, et al. CAS-1 lunar soil simulant[J]. Advances in Space Research, 2009, 43:448 - 454. 被引量:1

共引文献51

同被引文献103

引证文献6

二级引证文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部