摘要
文中主要证明了:(1)若T是一个代数拟*-n-仿正规算子,则T是极.(2)若T是一个代数拟*-n-仿正规算子,则Weyl定理对f(T)成立且f∈H(σ(T)),其中f是σ(T)开邻域上的解析函数.(3)若T*是一个代数拟*-n-仿正规算子,则广义α-Weyl定理对f(T)成立,其中f∈H(σ(T)).
In this paper, we mainly obtain the following assertions: (1) If T is an al- gebraically quasi-,-n-paranormal operator, then T is polaroid. (2) If T is an algebraically quasi-,-n-paranormal operator, then Weyl's theorem holds for f(T) for every f C H(σ(T)), where H(σ(T)) denotes the space of analytic functions on an open neighborhood of σ(T). (3) If T* is an algebraically quasi-*-n-paranormal operator, then generalized α-Weyl's theorem holds for f(T) for every f ∈ H(σ(T))
出处
《数学进展》
CSCD
北大核心
2016年第1期117-121,共5页
Advances in Mathematics(China)
基金
supported by NSFC(No.11201126,No.11401180)
the Basic Science and Technological Frontier Project of Henan(No.132300410261,No.14B110008)