期刊文献+

采用搜索趋化策略的布谷鸟全局优化算法 被引量:22

A Global Cuckoo Optimization Algorithm Using Coarse-to-Fine Search
下载PDF
导出
摘要 布谷鸟搜索算法是一种基于莱维飞行搜索策略的新型智能优化算法.单一的莱维飞行随机搜索更新策略存在全局搜索性能不足和寻优精度不高等缺陷.为了解决这一问题,本文提出了一种改进的布谷鸟全局优化算法.该算法的主要特点在于以下三个方面:首先,采用全局探测和模式移动交替进行的模式搜索趋化策略,实现了布谷鸟莱维飞行的全局探测与模式搜索的局部优化的有机结合,从而避免盲目搜索,加强算法的局部开采能力;其次,采取自适应竞争机制动态选择最优解数量,实现了迭代过程搜索速度和解的多样性间的有效平衡;最后,采用优势集搜索机制,实现了最优解的有效合作分享,强化了优势经验的学习.对52个典型测试函数实验结果表明,本文算法不仅寻优精度和寻优率显著提高,鲁棒性强,且适合于多峰及复杂高维空间全局优化问题.本文算法与最新提出的改进的布谷鸟优化算法以及其它智能优化策略相比,其全局搜索性能与寻优精度更具优势,效果更好. Cuckoo search(CS) algorithm is a meta-heuristic optimization algorithm based on Levy flights.We propose an improved cuckoo search algorithm to enhance the accuracy,avoid the local optima and accelerate the convergence speed.The proposed algorithm has three main characteristics.Firstly,pattern search method enhances the exploitation ability of the basic CS algorithm.The proposed algorithm combines the random exploration of the CS algorithm and the exploitation capacity of pattern search method.Secondly,the optimal solution is obtained by self-adaptive competition mechanism.Hence,the proposed algorithm has a trade-off between searching speed and the diversity of solution.Finally,we realize the cooperation of the optimal solution to share,and strengthen the advantage of experience learning in the use of the optimal solution set search mechanism.The experimental results conducted on 52 benchmark functions show that the proposed algorithm is promising in terms of accuracy,success rate and robustness.And it is also suitable for multimodal and high-dimensional numerical optimization problems.Therefore,in terms of the global search ability and solution accuracy,our algorithm performs better than other modified CS algorithms,such as ICS(Improved Cuckoo Search algorithm),CSPSO(Cuckoo Search algorithm and Particle Swarm Optimization),OLCS(Orthogonal Learning Cuckoo Search algorithm),etc.
作者 马卫 孙正兴
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第12期2429-2439,共11页 Acta Electronica Sinica
基金 国家自然科学基金(No.61321491 No.61272219 No.61100110) 国家863高技术研究发展计划(No.2007AA01Z334) 江苏省科技计划(No.BE2011058 No.BY2012190) 江苏省高校自然科学研究面上项目(No.15KJB520017) 计算机软件新技术国家重点实验室创新基金重点项目(No.ZZKT2013A12) 2014年度江苏省"青蓝工程"优秀青年骨干教师项目基金 南京旅游职业学院科研创新团队建设项目基金
关键词 布谷鸟算法 趋化搜索 Hooke-Jeeves模式搜索 合作分享 自适应竞争 全局优化 cuckoo search(CS) algorithm coarse-to-fine search Hooke-Jeeves pattern search cooperation and sharing adaptive competitive ranking global optimization
  • 相关文献

参考文献23

  • 1YANG X S,DEB S. Engineering optimization by cuckoo search [ J]. International Journal of Mathematical Modeling and Nu- merical Optimization, 2010,1 (4) : 330 - 343. 被引量:1
  • 2CIVICIOGLU P, BESDOK E. A conceptual comparison of the cuckoo search, particle swarm optimization, differential evolu- tion and artificial bee colony algorithms [ J ]. Artificial Intelli- gence Review,2013,39(4) :315 - 346. 被引量:1
  • 3YANG X S. Cuckoo search for inverse problems and simulated driven shape optimization[ J ]. Journal of Computational Meth- ods in Sciences and Engineering, 2011,12( 1):129- 137. 被引量:1
  • 4LAYEB A,BOUSSALIA S R.A novel quantum inspired cuck- oo search algorithm for bin packing problem[ J]. International Journal of Information Technology and Computer Science, 2012,4(5) :58 - 67. 被引量:1
  • 5VALIAN E, MOHANNA S, TAVAKOLI S. Improved cuckoo search algorithm for feed forward neural network Ixaining[ J]. International Journal of Afificial Intelligence & Applications, 2011,2(3) :36 - 43. 被引量:1
  • 6GANDOM ! A, YANG X, ALAVI A. Cuckoo search algo- rithm:a metaheuristic approach to solve structural optimization problems [ J]. Engineering with Computers, 2013,29 ( 1 ) : 17 - 35. 被引量:1
  • 7YANG X S,DEB S. Multi-objective cuckoo search for design optimization [ J ]. Computers & Operations Research, 2013,40 (6) : 1616 - 1624. 被引量:1
  • 8VALIAN E, MOHANNA S, TAVAKOLI S. Improved cuckoo search algorithm for global optimization [J]. International Jour- nal of Communications and Information Technology, 2011, 1 (1):31-44. 被引量:1
  • 9WALTON S,HASSAN O,MORGAN K,et al.Modified cuck- oo search: a new gradient free optimisation algorithm [ J ]. Chaos, Solitons & Fractals, 2011,44(9) : 710 - 718. 被引量:1
  • 10TUBA M, SUBOTIC M, STANAREVIC N. Modified cuckoo search algorithm for unconstrained optimization problems[ A]. Proceedings of the 5th European Conference on European Computing Conference [ C ]. Wisconsin: World Scientific and Engineering Academy and Society ( WSEAS ), 2011. 263 - 268. 被引量:1

二级参考文献94

  • 1李建武.遗传算法适应值曲面及遗传算法困难度分析[D].天津:天津大学,2003. 被引量:2
  • 2Kennedy J, Eberhart RC. Particle swarm optimization. In: Proc. of the IEEE Int’l Conf. on Neural Networks. Piscataway: IEEE Inc., 1995. 1942-1948. [doi: 10.1109/ICNN. 1995.488968]. 被引量:1
  • 3Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In: Proc. of the 6th Int’l Symp. on Micro Machine and Human Science. Piscataway: IEEE Inc., 1995. 39-43. [doi: 10.1109/MHS.1995.494215]. 被引量:1
  • 4Dorigo M, Maniezzo V, Colomi A. The ant system: Optimization by a colony of cooperating agents. IEEE Trans, on Systems, Man, and Cybernetics, Part B, 1996,26(1):29-41. [doi: 10.1109/3477.484436]. 被引量:1
  • 5Clerc M. Particle Swarm Optimization. Landon: Wiley-ISTE, 2006. 被引量:1
  • 6Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical Report, TR-06, Computer Engineering Department, Engineering Faculty, Erciyes University, 2005. 被引量:1
  • 7Chen H, Cui DW, Cui YA, Tao YQ, Liang K. Ethnic group evolution algorithm. Ruan Jian Xue Bao/Joumal of Software, 2010, 21(5):978-990 (in Chinese with English abstract), http://www.jos.org.cn/1000-9825/3484.htm [doi: 10.3724/SP.J.1001.2010. 03484]. 被引量:1
  • 8Yang XS, Deb S. Cuckoo search via Levy flights. In: Abraham A, Carvalho A, Herrera F, et al., eds. Proc. of the World Congress on Nature and Biologically Inspired Computing (NaBIC 2009). Piscataway: IEEE Publications, 2009. 210-214. [doi: 10.1109/ NABIC.2009.5393690]. 被引量:1
  • 9Yang XS, Deb S. Engineering optimisation by cuckoo search. Int’l Journal of Mathematical Modeling and Numerical Optimisation, 2010,l(4):330-343. [doi: 10.1504/IJMMN0.2010.03543]. 被引量:1
  • 10Yang XS, Deb S. Multi-Objective cuckoo search for design optimization. Computers & Operations Research, 2013,40(6): 1616-1624. [doi: 10.1016/j.cor.2011.09.026]. 被引量:1

共引文献162

同被引文献151

引证文献22

二级引证文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部