期刊文献+

基于多通道卷积神经网络的非结构化道路路表分析 被引量:3

ANALYSING TERRAIN OF UNSTRUCTURED ROAD BASED ON MULTI-CHANNEL CONVOLUTION NEURAL NETWORK
下载PDF
导出
摘要 针对传统卷积神经网络CNN(Convolutional Neural Networks)在训练或学习时只利用图像的灰度信息,丢失了颜色信息的问题,提出一种基于多通道卷积神经网络来提取特征的方法。该算法对于每一个颜色通道分别学习一个多层卷积神经网络,并且在输出层通过全连通的神经网络进行融合。算法首先建立三个多层卷积神经网络来学习图像三个通道(RGB,HSV,Lab等)的特征;然后将三个颜色通道的特征赋予不同的权值(权值和为1)后进行融合,得到样本的特征;最后通过一个全连通的神经网络得到分类结果。实验结果分析表明,该算法相比于传统卷积神经网络能取得更高的准确性,同时能更好地适应复杂多变的环境。 Conventional convolution neural network only uses image gray scale information in training or learning but loses colour information. Aiming at this problem, the paper proposes a method which extracts the features based on multi-channel convolution neural networks. The algorithm learns one multi-layers convolution neural network for each colour channel respectively and fuses them through a full connected network on output layer. First, the algorithm establishes three multi-layers convolution neural networks to learn the characteristics of three channels ( RGB, HSV, Lab, etc. ) of image. Then it assigns different weights (weights sum 1 ) to the characteristics of these three colour channels and then fuses them to get the sample characteristics. Finally, it obtains the classification results by a fully connected neural network. It is showed by analysing the experimental results that this algorithm has higher accuracy than conventional convolution neural network while can better adapt to complex changing environments.
出处 《计算机应用与软件》 CSCD 2016年第1期159-162,共4页 Computer Applications and Software
关键词 卷积神经网络 颜色信息 多通道 自学习特征 Convolution neural network Colour information Multi-channel Self-learning feature
  • 相关文献

参考文献21

  • 1Manduchi R.Obstacle Detection and Terrain Classification for Autonomous off-road Navigation[J].Autonomous Robots,2005,18(1):81-102. 被引量:1
  • 2Angelova A,Matthies L,Helmick D,et al.Fast terrain classification using variable-length representation for autonomous navigation[C]//Computer Vision and Pattern Recognition,2007.CVPR’07.IEEE Conference on.IEEE,2007:1-8. 被引量:1
  • 3Sung G Y,Kwak D M,Kim D J,et al.Terrain cover classification based on wavelet feature extraction[C]//Control,Automation and Systems,2008.ICCAS 2008.International Conference on.IEEE,2008:203-207. 被引量:1
  • 4Castano R,Manduchi R,Fox J.Classification experiments on real-world texture[C]//Third Workshop on Empirical Evaluation Methods in Computer Vision,Kauai,Hawaii,December 10,2001.Pasadena,CA:Jet Propulsion Laboratory,National Aeronautics and Space Administration,2001:1-20. 被引量:1
  • 5Pietikainen M,Nurmela T,Maenpaa T,et al.View-based recognition of real-world textures[J].Pattern Recognition,2004,37(2):313-323. 被引量:1
  • 6Buluswar S D,Draper B A.Color models for outdoor machine vision[J].Computer Vision and Image Understanding,2002,85(2):71-99. 被引量:1
  • 7Ji S,Xu W,Yang M,et al.3D convolutional neural networks for human action recognition[J].Pattern Analysis and Machine Intelligence,IEEE Transactions on,2013,35(1):221-231. 被引量:1
  • 8Krizhevsky A,Sutskever I,Hinton G E.Image Net Classification with Deep Convolutional Neural Networks[C]//Neural Information Processing Systems,2012:1106-1114. 被引量:1
  • 9Chen B,Polatkan G,Sapiro G,et al.Deep Learning with Hierarchical Convolutional Factor Analysis[J].Pattern Analysis and Machine Intelligence,IEEE Transactions on,2013,35(8):1887-1901. 被引量:1
  • 10Xie J,Xu L,Chen E.Image Denoising and Inpainting with Deep Neural Networks[C]//Neural Information Processing Systems,2012:350-358. 被引量:1

二级参考文献48

  • 1刘微,罗林开,王华珍.基于随机森林的基金重仓股预测[J].福州大学学报(自然科学版),2008,36(S1):134-139. 被引量:8
  • 2张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 3林成德,彭国兰.随机森林在企业信用评估指标体系确定中的应用[J].厦门大学学报(自然科学版),2007,46(2):199-203. 被引量:37
  • 4Ahonen T,Hadid A,Pietikainen M.Face Recognition with Local Binary Patterns[C]//Proc 8 th European Conference on Computer Vision,Prague,Czech,2004:469-481. 被引量:1
  • 5Ahonen T,Hadid A,Pietikainen M.Face description with local binary patterns:application to face recognition[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2006,28 (1 2):2037-2041. 被引量:1
  • 6Ojala T,Pietikainen M,Harwood D.A comparative study of texture measures with classification based on featured distribution[J].Pattern Recognition,1996,29:51-59. 被引量:1
  • 7Ojala T,Pietikainen M,Maenpaa T.Multirresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987. 被引量:1
  • 8Lowe D G.Distinctivemage eatures from Scale-Invariant keypoints[J].International Journal of Computer Vision,2004,60 (2):91-110. 被引量:1
  • 9Breiman L. Bagging Preditors [J].Machine Learning, 1996,24(2). 被引量:1
  • 10Dietterich T. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting and Randomization [J].Machine Learning, 2000,40(2). 被引量:1

共引文献682

同被引文献29

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部