期刊文献+

二月桂酸硫代二甘醇酯的合成及其在聚丙烯中抗氧化性能研究(英文)

Preparation of Dilauric Acid Thiodiglycol Ester and Evaluation of Its Antioxidant Capacity in Polypropylene Resin
原文传递
导出
摘要 以硫代二甘醇和月桂酸为原料,选用对甲苯磺酸为催化剂、二甲苯为带水剂,合成了抗氧剂二月桂酸硫代二甘醇酯。适宜工艺条件为:反应温度140℃,醇酸摩尔比为2∶1.5,催化剂用量为月桂酸质量的2.0%。将产物应用于聚丙烯中,与商品化的抗氧化剂相比具有良好的抗氧化性能。结果表明,添加二月桂酸硫代二甘醇酯后,聚丙烯的熔体流动速率从5.36g·10min-1降低到3.59g·10min^(-1);断裂伸长率和冲击强度分别达到112.2%和121.0k J·m^(-2)。当与商品化抗氧化剂168或1010混合使用时,抗氧化性能显著增加:与168混合时,熔体流动速度、拉伸强度、断裂伸长率和冲击强度分别达3.28g·10min^(-1)、40.2MPa、140.8%和124.2k J·m^(-2);与1010混合时,熔体流动速度达3.56g·10min^(-1)。 A new antioxidant dilauric acid thiodiglycol ester is prepared in high yield starting from thiodiglycol and lauric acid catalyzed by p-toluenesulfonic acid.The optimized reaction condition is as follows: using xylene to remove water azeotropically with reaction temperature at 140℃,molar ratio of thiodiglyol to lauric acid at 2∶1.5,and loading of catalyst at 2% by weight of lauric acid.The antioxidant activity of the product is investigated and compared with other commercially available antioxidants.The results show that when dilauric acid thiodiglycol ester is used as antioxidant additive,the melt flow index( MFI) of polypropylene powder decreases sharply from 5.36 g·10min-1 to 3.59 g·10min-1,and elongation at break and impact strength also reach a high level to 112.2% and 121.0kJ ·m-2.The blending of dilauric acid thiodiglycol ester with commercially available antioxidant 1010 or 168 can further improve the antioxidant performance.Tensile strength of 40.2 MPa,elongation at break of 140.8% and impact strength of 124.2kJ ·m-2 are obtained when dilauric acid thiodilglycol ester is combined with 168,while MFI decreases to 3.56g·10min-1 and 3.28g·10min-1 when it is combined with 1010 and 168,respectively.
作者 黄敏 蒋达洪
出处 《化学通报》 CAS CSCD 北大核心 2016年第1期37-42,共6页 Chemistry
基金 茂名市科技计划项目(201328) 广东省科技计划项目(2014B010108017)资助
关键词 抗氧化性 二月桂酸硫代二甘醇酯 聚丙烯 熔体流动速度 拉伸强度 断裂伸长率 Antioxidant Dilauric acid thiodiglycol ester Polypropylene Melt flow index Tensile strength Elongation at break
  • 相关文献

参考文献23

  • 1G E Zaikov. Russ. Chem. Rev., 1991, 60( 10) : 1145 -1162. 被引量:1
  • 2L V Abad, L S Relieve, C T Aranilla et al. Polym. Degrad. Stabil. , 2002, 76: 275 - 279. 被引量:1
  • 3Z Liu , Y Liu, N He et al. Chin. J. Polym. Sci. ,2014,32 (12): 1602 -1609. 被引量:1
  • 4B Xue, K Ogata, A Toyota. Polym. Degrad. Stabil. , 2008 93 : 347 - 352. 被引量:1
  • 5X Gao, X Meng, H Wang. Polym. Degrad. Stabil. , 2008, 93:1467 - 1471. 被引量:1
  • 6X Wang, B Wang, L Song et al. Polym. Degrad. Stabil. , 2013, 98(9): 1945 -1951. 被引量:1
  • 7G Kasza, K Mosnackova, A Nador. Eur. Polym. J. , 2015, 68:609 -617. 被引量:1
  • 8T Seguchi, K Tamura, A Shimada et a|. Radiat. Phys. Chem., 2012, 81(11): 1747 -1751. 被引量:1
  • 9T I Naumova, V A Tysbcbenko, G V Surovskaya et al. Chem. Tech. Fuels Oils, 2011, 47(5): 395-398. 被引量:1
  • 10K Schwet|ick, W D Habicher. Polym. Degrad. Stabil., 2002, 78 : 35 - 40. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部