期刊文献+

基于非抽样小波字典和稀疏表示的图像去噪方法 被引量:2

IMAGE DENOISING APPROACH BASED ON UNDECIMATED WAVELET DICTIONARY AND SPARSE REPRESENTATION
下载PDF
导出
摘要 图像去噪是图像处理中的关键问题之一,也是图像后续处理的基础,结合近年来兴起的稀疏表示理论,能更好地处理图像去噪问题。通过引入图像稀疏表示框架,从含噪图像自身中优化训练字典,初始字典选择构造非采样小波字典来更好地捕获图像信息,通过反复迭代学习获得高度自适应的过完备稀疏字典,重构图像时构造先验概率矩阵,结合后验概率估计与传统的正交匹配算法提出改进的图像重构算法。实验结果表明,与其他去噪方法相比,该算法具有良好的去噪能力,能较好地保持图像的边缘和细节特征,去噪后的图像更为清晰。 Image denoising is one of the key issues in image processing as well as the foundation of image post-processing. To combine the sparse representation theory arisen in recent years can process image denoising better. Through introducing the framework of image sparse representation,we optimise the training dictionary from the noisy image itself. For initial dictionary,we choose undecimated wavelet dictionary to better acquire the information of image. The highly adaptive overcomplete sparse dictionary can be acquired through repeated iteration learning. When reconstructing image,we establish priori probability matrix and propose the improved image reconstruction algorithm by combining the posteriori probability estimation with traditional orthogonal matching algorithm. Experimental result shows that compared with other denoising methods,this algorithm has good denoising ability and can well keep edges and detailed features of image. What's more,the image gets clearer after denoising.
出处 《计算机应用与软件》 CSCD 2015年第12期193-196,205,共5页 Computer Applications and Software
基金 江苏省教育厅项目(12KJB520001)
关键词 图像去噪 稀疏表示 非抽样小波 过完备字典 Image denoising Sparse representation Undecimated wavelet Overcomplete dictionary
  • 相关文献

参考文献13

  • 1KennethRCastleman 朱志刚.数字图像处理[M].北京:电子工业出版社,2002.. 被引量:28
  • 2Mallat S.A wavelet tour of signal processing[M].Academic press,1999. 被引量:1
  • 3Do M N,Vetterli M.Framing pyramids[J].Signal Processing,IEEE Transactions on,2003,51(9):2329-2342. 被引量:1
  • 4Marcellin M W,Gormish M J,Bilgin A,et al.An overview of JPEG-2000[C]//Data Compression Conference,2000.Proceedings.DCC2000.IEEE,2000:523-541. 被引量:1
  • 5Mairal J,Bach F,Ponce J,et al.Discriminative learned dictionaries for local image analysis[C]//Computer Vision and Pattern Recognition,2008.CVPR 2008.IEEE Conference on.IEEE,2008:1-8. 被引量:1
  • 6Ranzato M,Huang F J,Boureau Y L,et al.Unsupervised learning of invariant feature hierarchies with applications to object recognition[C]//Computer Vision and Pattern Recognition,2007.CVPR’07.IEEE Conference on.IEEE,2007:1-8. 被引量:1
  • 7Raina R,Battle A,Lee H,et al.Self-taught learning:transfer learning from unlabeled data[C]//Proceedings of the 24th international conference on Machine learning.ACM,2007:759-766. 被引量:1
  • 8Murray J F,Kreutz-Delgado K.Sparse image coding using learned overcomplete dictionaries[C]//Machine Learning for Signal Processing,2004.Proceedings of the 2004 14th IEEE Signal Processing Society Workshop.IEEE,2004:579-588. 被引量:1
  • 9Elad M,Aharon M.Image denoiding via sparse and redundant representation over learned dictionaries[J].IEEE Trans on Image Processing,2006,15(12):3376-3745. 被引量:1
  • 10Wang X H,Istepanian R S H,Song Y H.Microarray image enhancement by denoising using stationary wavelet transform[J].NanoB ioscience,IEEE Transactions on,2003,2(4):184-189. 被引量:1

二级参考文献11

  • 1丁西明.基于小波变换的图像增强研究[D].合肥:安徽大学,2010: 36-39. 被引量:1
  • 2Kass M, Witkin A,Terzopoulos D. Snakes : active contour models [ J ]. International Journal of Computer Vision, 1987,1 (4) :321 - 331. Y. 被引量:1
  • 3ing W, Zhixian L,Jianguo C, et al. Automatic MRI Brain Tumor Seg- mentation System Based on Localizing Active Contour Models[J]. Ad- vanced Materials Research ,2011,219 - 220 : 1342 - 1346. 被引量:1
  • 4Hamamci A, Kucuk N, Karaman K, et al. Tumor-Cut : Segmentation of Brain Tumors on Contrast Enhanced MR Images for Radiosurgery Ap- plications[ J]. IEEE Transactions on Medical Imaging,2012,31 (3) : 790 - 804. 被引量:1
  • 5Sharon E,Galun M,Sharon D,et al. Hierarchy and adaptivity in seg- menting visual scenes[ J]. Nature,2006,442(7104) :810 - 813. 被引量:1
  • 6Sharon E, Brandt A, Basri R. Fast muhiscale image segmentation [ C]//Los Alamitos,CA,USA:IEEE Comput. Soc,2000. 被引量:1
  • 7Sharon E,Brandt A,Basri R. Segmentation and boundary detection u- sing multiscale intensity measurements [ C ]//Los Alamitos, CA, USA : IEEE Comput. Soc,2001. 被引量:1
  • 8Shi J, Malik J. Normalized cuts and image segmentation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 (8) :888 -905. 被引量:1
  • 9Corso J J, Sharon E, Dube S, et al. Efficient multilevel brain tumor seg- mentation with integrated Bayesian model classification [ J ]. IEEE Transactions on Medical Imaging, 2008,27 ( 5 ) : 629 - 640. 被引量:1
  • 10Open-edit educational radiology resource [OL]. http ://Radiopaedia org:2011. 被引量:1

共引文献27

同被引文献11

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部