期刊文献+

Distribution of a modulated squeezed state over a lossy channel 被引量:1

Distribution of a modulated squeezed state over a lossy channel
原文传递
导出
摘要 The distribution of a modulated squeezed state over a quantum channel is the basis for quantum key distribution(QKD) with a squeezed state. In this Letter, a modulated squeezed state is distributed over a lossy channel. The Wigner function of the distributed state is measured to observe the evolution of the quantum state over a lossy channel, which shows that the squeezing level and the displacement amplitude of the quantum state are decreased along with the increase of the channel loss. We also measure the squeezing level in the frequency domain by the frequency shift technique. The squeezing of the modulated squeezed state at the modulation frequency is observed in this way. The presented results supply a reference for a QKD with a squeezed state. The distribution of a modulated squeezed state over a quantum channel is the basis for quantum key distribution(QKD) with a squeezed state. In this Letter, a modulated squeezed state is distributed over a lossy channel. The Wigner function of the distributed state is measured to observe the evolution of the quantum state over a lossy channel, which shows that the squeezing level and the displacement amplitude of the quantum state are decreased along with the increase of the channel loss. We also measure the squeezing level in the frequency domain by the frequency shift technique. The squeezing of the modulated squeezed state at the modulation frequency is observed in this way. The presented results supply a reference for a QKD with a squeezed state.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2015年第12期75-79,共5页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11174188,61475092,and 11522433) the OIT(2013805)
关键词 Communication channels (information theory) Frequency domain analysis Quantum cryptography Quantum optics Communication channels (information theory) Frequency domain analysis Quantum cryptography Quantum optics
  • 相关文献

参考文献24

  • 1C. Weedbrook, S. Pirandola, R. GarciarPatron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys. 84, 621 (2012). 被引量:1
  • 2S. Pirandola, Sci. Rep. 4, 46956 (2014). 被引量:1
  • 3X. Su, Chin. Sci. Bull. 59, 1083 (2014). 被引量:1
  • 4F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangie, Nature 421, 238 (2003). 被引量:1
  • 5S. Lorenz, N. Korolkova, and G. Leuchs, Appl. Phys. B 79,273 (2004). 被引量:1
  • 6A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam, Phys. Rev. Lett. 95, 180503 (2005). 被引量:1
  • 7T. Symul, D. J. Alton, S. M. Assad, A. M. Lance, C. Weedbrook, T. C. Ralph, and P. K. Lam, Phys. Rev. A 76, 030303 (2007). 被引量:1
  • 8J. Lodewyck, M. Bloch, R. Garcfa-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, Phys. Rev. A 76, 042305 (2007). 被引量:1
  • 9B. Qi, L. L. Huang, L. Qian, and H. K. Lo, Phys. Rev. A 76, 052323(2007). 被引量:1
  • 10Y. Shen, H. Zou, L. Tian, P. Chen, and J. Yuan, Phys. Rev. A 82, 022317 (2010). 被引量:1

同被引文献5

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部