期刊文献+

基于模糊自适应阻抗控制的机器人接触力跟踪 被引量:15

Force tracking research for robot based on fuzzy adaptive impedance control algorithm
下载PDF
导出
摘要 为实现高空幕墙安装机器人末端接触力控制,基于自适应控制理论,针对简化的高空幕墙安装机器人动力学模型,提出一种自适应阻抗控制方法,该方法可以使机器人末端接触力准确跟踪期望力.为改进系统实时性效果,在此基础上应用模糊控制理论,对阻抗控制器中的阻尼参数B进行实时调整,阐述了调整参数B的方法:当接触力与期望力偏差较大,阻尼参数B应选择较小值,以便系统能够快速接近期望力;当偏差较小或在平衡位置振荡,应取较大的阻尼参数B,有利于系统快速稳定.仿真结果表明,基于模糊自适应阻抗控制算法不仅能够准确控制机器人末端接触力,且可减小系统超调量,改善实时性和减小振荡,既保留了自适应算法的优点,又提高了系统控制品质.在相同参数条件下,与自适应阻抗控制算法相比,模糊自适应阻抗控制算法使机器人末端接触力峰值减小6.25%,振荡次数减少33.33%,跟踪速度加快约36.36%,提高了幕墙安装机器人的施工效率和安全性. An adaptive impedance control algorithm was proposed for accurate force control between end-effector of curtain wall installation robot and environment.The algorithm could attain force tracking combining a simplified dynamic model of the robot and adaptive theory.In order to improve tracking speed,overshoot and oscillation times,damping parameter Bwas adjusted in real time and the adjusting method of fuzzy rules was explained so as to get proper parameters B.When deviation between contact force and expected force was big,smaller value of the damping parameter Bshould be chosen.On the contrary,when the deviation was small or the system was in a state of oscillation in balanced position,the larger value of parameter B was conducive to make the system have good stability.Simulation showed that the designed fuzzy adaptive impedance control algorithm could accurately control contacting force with less overshoot,less oscillation times and rapid response.It not only retained the advantages of adaptive control method but also improved the control quality of the guidance system.Compared with adaptive impedance control algorithm,the improved fuzzy control method made the peak value of force decreased by6.25%,the oscillation times reduced by 33.33% and tracking velocity quickened about 36.36%,which could improve the working efficiency and security.
出处 《工程设计学报》 CSCD 北大核心 2015年第6期569-574,588,共7页 Chinese Journal of Engineering Design
基金 国家科技支撑计划项目(2013BAF07B00) 河北省科技支撑计划项目(13211910D)
关键词 幕墙安装 自适应控制算法 模糊控制 力跟踪 curtain wall installation adaptive control algorithm fuzzy control force tracking
  • 相关文献

参考文献15

  • 1SEUNG N Y,SEUNG Y L,CHANG S H. Development of the curtain wall installation robot: performance and ef ficiency tests at a construction site[J]. Auton Robot, 2007,22(3) :281- 291. 被引量:1
  • 2SEUNG Y L. Glazed panel construction with human ro bot cooperation[D]. Daegu: Daegu Gyeongbuk Institute of Science and Technology, 2011:3-8. 被引量:1
  • 3SEUNG Y I.,KYE Y L,SANG H L. Human robot co operation control for installing heavy construction mate rials [J]. Auton Robot,2007,22(3) :2305- 2319. 被引量:1
  • 4KYE Y L,SEUNG Y L,JONG-HO C. The application of the human-robot cooperative system for construction robot manipulating and installing heavy materials [C]// SICE-ICASE International Joint Con{erence. Busan, Korea : IEEE, 2006 : 4798-4802. 被引量:1
  • 5张磊..基于阻抗控制的空间机械臂辅助对接研究[D].哈尔滨工业大学,2013:
  • 6PIRES J N, GODINHO T, ARAUJO R. Force control for industrial applications using a fuzzy PI controller [J]. Sensor Review,2004,24(1):60- 67. 被引量:1
  • 7林君健..基于力传感器的工业机器人主动柔顺装配系统研究[D].华南理工大学,2013:
  • 8王宪伦..不确定环境下机器人柔顺控制及可视化仿真的研究[D].山东大学,2006:
  • 9李正义,曹汇敏.适应环境刚度、阻尼参数未知或变化的机器人阻抗控制方法[J].中国机械工程,2014,25(12):1581-1585. 被引量:25
  • 10崔亮..机器人柔顺控制算法研究[D].哈尔滨工程大学,2013:

二级参考文献27

  • 1代颖,郑南宁.指数稳定的机器人鲁棒跟踪控制[J].机器人,1997,19(3):161-165. 被引量:2
  • 2Kiguchi K,Rahman M H,Sasaki M,et al.Development of a 3DOF mobile exoskeleton robot for human upper-limb motion assist[J].Robotics and Autonomous Systems,2008,56(8):678-691. 被引量:1
  • 3Richardson R,Jackson A,Culmer E et al.Pneumatic impedance control of a 3-d.o.f.physiotherapy robot[J].Advanced Robotics,2006,20(12):1321-1339. 被引量:1
  • 4Akdo(g)an E,Tacgin E,Adli M A.Knee rehabilitation using an intelligent robotic system[J].Journal of Intelligent Manufacturing,2009,20(2):195-202. 被引量:1
  • 5Veneman J E Kruidhof R,Hekman E E G,et al.Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2007,15(3):379-386. 被引量:1
  • 6Zhang L Q,Portland G H,Wang G,et al.Stiffness,viscosity,and upper-limb inertia about the glenohumeral abduction axis[J].Journal of Orthopedic Research,2000,18(1):94-100. 被引量:1
  • 7Mallapragada V,Erol D,Sarkar N,et al.A new method of force control for unknown environments[J].International Journal of Advanced Robotic Systems,2007,4(3):313-322. 被引量:1
  • 8Ju M S,Lin C C K,Lin D H,et al.A rehabilitation robot with force-position hybrid fuzzy controller:Hybrid fuzzy control of rehabilitation robot[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2005,13(3):349-358. 被引量:1
  • 9Zhang L Q,Chung S G,Bai Z Q,et al.Intelligent stretching of ankle joints with contracture/spasticity[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2002,10(3):149-157. 被引量:1
  • 10A.loria,R.Kelly,R.Ortg and V.Santibanez,On global output feedback regulation of Euler- langrange systems with bounded inputs, IEEE Trans. Auto. Control 42(1997), 1138- 1143. 被引量:1

共引文献72

同被引文献75

引证文献15

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部