摘要
本文研究了如下Rayleigh型时滞平均曲率方程(u′(t)/√1+(u′(t))^2)′+f(t,u′(t))+g(u(t-τ(t)))=p(t)周期解的存在性问题.运用Mawhin重合度扩展定理,本文给出了证明方程至少存在一个T-周期解的充分性条件.最后本文给出例子验证了文章的主要结论.
In this paper, we give certain sufficient conditions for the existence of periodic solutions to the following prescribed mean curvature Rayleigh equations with a deviating argument (u′(t)/√1+(u′(t))^2)′+f(t,u′(t))+g(u(t-τ(t)))=p(t)By using Mawhin's continuation theorem, we prove that the given equation has at least one T- periodic solution. At last, we give an example to illustrate the application of our main results.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2016年第1期19-24,共6页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(11271197)
关键词
周期解
重合度拓展定理
Rayleigh型平均曲率方程
时滞
Periodic solutions
Continuation theorem
Prescribed mean curvature Rayleigh equation
Deviating arguments