期刊文献+

ECR等离子体刻蚀对玻璃光学和润湿性能的影响(邀请论文) 被引量:2

Influence of Electron Cyclotron Resonance Plasma Etching on the Optical and Wetting Properties of Glass(Invited Paper)
下载PDF
导出
摘要 为了提高太阳能电池盖板玻璃的透过率和自清洁性能,采用电子回旋共振(ECR)等离子体刻蚀与金属颗粒掩膜结合的方法刻蚀硼硅酸盐玻璃,采用扫描电镜(SEM)对刻蚀后玻璃表面形貌进行了观察,采用分光光度计测量了刻蚀前后玻璃透过率变化,并用接触角仪测定了刻蚀前后玻璃表面润湿性变化.结果表明:经过ECR等离子体刻蚀后,在玻璃表面形成多山峰状纳米结构,平均尺寸约在80~140 nm,并有效提高了玻璃的可见光透过率,尤其是在有偏压刻蚀后透过率由原来91%提高到94.4%,同时,玻璃表面亲水性增强,接触角θ_c由原来的47.2°变为7.4°,自清洁性能得到提高. In order to improve the transmittance and self-cleaning properties of solar cell cover glass. The borosilicate glass was etched by electron cyclotron resonance ( ECR ) plasma etching with metal nanoparticles mask. The glass surface after etching was observed by scanning electron microscopy ( SEM ) . The change of the transmittance of the glass after etching was measured by the UV-VIS spectrophotometer. The wetting property of the bare and etching glass was determined by the contact angle instrument. The results show the mountainous structure was formed on glass substrate after ECR plasma etching,and its average size ranges from 80 nm to 140 nm. The visible light transmittance of the glass is effectively improved. It increases from 91% to 94. 4% with the bias etching. Moreover, It enhancs the hydrophilicity on the surface of the glass. The lower contact angle (θc) of 7. 4° is obtained compared to the bare glass substrate (θc~47. 2°). The self-cleaning properties are improved.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2015年第12期1897-1900,共4页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(11274028) 北京工业大学研究生科技基金重点项资助目(ykj-2014-11444)
关键词 ECR等离子体刻蚀 玻璃 透过率 亲水性 ECR plasma etching glass transmittance hydrophilicity
  • 相关文献

参考文献8

  • 1L.K. Verma,M. Sakhuja,J. Son,A.J. Danner,H. Yang,H.C. Zeng,C.S. Bhatia.??Self-cleaning and antireflective packaging glass for solar modules(J)Renewable Energy . 2011 (9) 被引量:2
  • 2Leem Jung Woo,Yeh Yunhae,Yu Jae Su.Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns. Optics Express . 2012 被引量:1
  • 3P. B. CLAPHAM,M. C. HUTLEY.Reduction of Lens Reflexion by the “Moth Eye” Principle. Nature . 1973 被引量:1
  • 4XiaoLi,JunpengGao,LongjianXue,YanchunHan.??Porous Polymer Films with Gradient‐Refractive‐Index Structure for Broadband and Omnidirectional Antireflection Coatings(J)Adv. Funct. Mater. . 2010 (2) 被引量:1
  • 5Andreas Jonsson,Arne Roos.??Visual and energy performance of switchable windows with antireflection coatings(J)Solar Energy . 2010 (8) 被引量:1
  • 6Daniel Infante,Karl W. Koch,Prantik Mazumder,Lili Tian,Albert Carrilero,Domenico Tullit,David Baker,Valerio Pruneri.Durable, superhydrophobic, antireflection, and low haze glass surfaces using scalable metal dewetting nanostructuring[J].Nano Research,2013,6(6):429-440. 被引量:6
  • 7Lin Yao,Junhui He.??Recent progress in antireflection and self-cleaning technology – From surface engineering to functional surfaces(J)Progress in Materials Science . 2014 被引量:1
  • 8Li, Yunfeng,Zhang, Junhu,Zhu, Shoujun,Dong, Heping,Jia, Fei,Wang, Zhanhua,Sun, Zhiqiang,Zhang, Liang,Li, Yang,Li, Haibo,Xu, Weiqing,Yang, Bai.Biomimetic surfaces for high-performance optics. Advanced Materials . 2009 被引量:1

二级参考文献35

  • 1Varghese, O. K.; Paulose, M.; Grimes, C. A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol. 2009, 4, 592-597. 被引量:1
  • 2Formica, N.; Ghosh, D. S.; Chen, T. L.; Eickhoff, C.; Bruder, 1.; Pruneri, V. Highly stable Ag-Ni based transparent electrodes on pet substrates for flexible organic solar cells. Sol. Energ. Mat. Sol. C2012, 107, 63-68. 被引量:1
  • 3Gorrn, P.; Sander, M.; Meyer, J.; Kroger, M.; Becker, E.; Johannes, H. H.; Kowalsky, W.; Riedl, T. Towards see-through displays: Fully transparent thin-film transistors driving transparent organic light-emitting diodes. Adv. Mater. 2006, 18,738-741. 被引量:1
  • 4Ren, H. W.; Fox, D. W.; Wu, B.; Wu, S. T. Liquid crystal lens with large focal length tunability and low operating voltage. Opt. Express 2007,15,11328-11335. 被引量:1
  • 5Cheylan, S.; Ghosh, D. S.; Krautz, D.; Chen, T. L.; Pruneri, V.Organic light-emitting diode with indium-free metallic bilayer as transparent anode. Org. Electron. 2011, 12, 818-822. 被引量:1
  • 6Li, Y. F.; Li, F.; Zhang, J. H.; Wang, C. L.; Zhu, S. J.; Yu, H.J.; Wang, Z. H.; Yang, B. Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces. Appl. Phys. Lett. 2010, 96, 153305. 被引量:1
  • 7Tulli, D.; Janner, D.; Garcia-Granda, M.; Rieken, R.; Pruneri, V. Electrode-free optical sensor for high voltage using a domain-inverted lithium niobate waveguide near cut-off. Appl. Phys. B 2011, 103, 399--403. 被引量:1
  • 8Dannberg, P.; Erdmann, L.; Bierbaum, R.; Krehl, A; Brauer, A.; Kley, E. B. Micro-optical elements and their integration to glass and optoelectronic wafers. Microsyst. Technol. 1999, 6,41--47. 被引量:1
  • 9Hecht, E. Interference. In Optics, 4th ed. Addison-Wesley:San Francisco, 2001; pp 428--431. 被引量:1
  • 10Lalanne, P.; Morris, G. M. Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain. SPIE 1996, 2776, 300-309. 被引量:1

共引文献5

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部