期刊文献+

银氨体系双氧水还原法制备超细银粉 被引量:1

Ultra-fine silver powder fabricated by silver ammonia-hydrogen peroxide reduction method
下载PDF
导出
摘要 硝酸银溶液中加入浓氨水配制成一定pH的银氨溶液,加入双氧水作还原剂制备超细银粉,对加料方式、银氨溶液pH值、AgNO3溶液浓度、双氧水浓度等参数以及分散剂对银粉的影响进行研究。结果表明,采用正向快速加料法可制备出分散性好的银粉;调节银氨溶液pH值可改变银颗粒的Zeta电位,进而改变银粉的分散性;银粉粒径随双氧水浓度提高先增大后减小,随AgNO3溶液浓度提高而增大;分散剂对银粉形貌有较大影响。在硝酸银溶液浓度为0.1~0.3mol/L,银氨溶液pH值为10.0~11.0,双氧水浓度(质量分数)为3%的条件下,不使用任何分散剂可制备出分散性较好、平均粒径1.9~2.3μm的类球形银粉。 The ultra-fine silver powder was prepared using silver ammonia solutioin with a certain pH value prepared by adding stronger ammonia water in AgNO3 solution as feed solution, and adding hydrogen peroxide as reducer. The effects of the feeding mode, pH value, dispersants, concentration of AgNO3 and H2O2 on the morphology and particle size of silver powder were investigated. The results show that the optimal dispersive silver powder can be prepared by positive rapid addition of H2O2. The Zeta potential of silver particles can be tuned by changing pH value of silver ammonia, then influence the silver powder dispersity. Silver particle size first increases then decreases with increasing H2O2 concentration, while it increases with increasing the AgNO3 concentration. The dispersants have great effect on the morphology of silver powder. The optimal spherical like and dispersive silver powder with mean particle size of 1.9- 2.3 μm can be prepared with the AgNO3 concentration of 0 of 3% with the absence of dispersants. 1-0.3 mol/L, the pH value of 10.0~11.0, H2O2 mass fraction
出处 《粉末冶金材料科学与工程》 EI 北大核心 2015年第6期928-936,共9页 Materials Science and Engineering of Powder Metallurgy
基金 国家国际合作专项(2014DFA90520) 广东省产学研项目(2013A100003) 博士研究生自主探索创新项目(2015zzts035)
关键词 超细银粉 双氧水 分散剂 ZETA电位 气泡分散机理 ultra-fine silver powder hydrogen peroxide dispersant Zeta potential bubble dispersive mechanism
  • 相关文献

参考文献24

  • 1GONZALEZ-MACIA L, SMYTH M R, MORRIN A, et al. Enhanced electrochemical reduction of hydrogen peroxide on silver paste electrodes modified with surfactant and salt [J]. Electrochimica Acta, 2011, 56(11): 4146-4153. 被引量:1
  • 2LI Shu-ming, JIA Ning, MA Ming-guo, et al. Cellulose-silver nanocomposites: Microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property [J]. Carbohydrate Polymers, 2011, 86(2): 441-447. 被引量:1
  • 3SHARMA P, BAEK I H, CHO T, et al. Enhancement of thermal conductivity of ethylene glycol based silver nanofluids [J]. Powder Technology, 2011,208(1): 7-19. 被引量:1
  • 4VIDYAPATI V, LANGROUDI M K, SUN J, et al. Experimental and computational studies of dense granular flow: Transition from quasi-static to intermediate regime in a couette shear device [J]. Powder Technology, 2012, 220: 7-14. 被引量:1
  • 5LI C C, CHANG S J, SU F J, et al. Effects of capping agents on the dispersion of silver nanopartieles [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 419: 209-215. 被引量:1
  • 6郭桂全,甘卫平,罗贱,向锋,张金玲,周华,刘欢.正交设计法优化高分散超细银粉的制备工艺[J].稀有金属材料与工程,2011,40(10):1827-1831. 被引量:20
  • 7刘志宏,刘智勇,李启厚,吴厚平,张多默.喷雾热分解法制备超细银粉及其形貌控制[J].中国有色金属学报,2007,17(1):149-155. 被引量:42
  • 8YANG S Y, KIM S G. Characterization of silver and silver/nickel composite particles prepared by spray pyrolysis [J]. Powder Technology, 2004(146): 185-192. 被引量:1
  • 9蒋伟燕..配位沉淀—热分解法制备纤维状银粉[D].中南大学,2010:
  • 10尹荔松,阳素玉,何鑫,范海陆,安科云,龚青.球形纳米银粒子制备新方法及其表征[J].纳米技术与精密工程,2010,8(4):295-299. 被引量:17

二级参考文献155

共引文献128

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部