摘要
利用下肢外骨骼关节位移传感器及惯性导航单元采集人体运动信息,计算获得下肢髋、膝关节的相对角度以及躯干的姿态和加速度,通过动力学逆解实时解算穿戴者运动所需的关节驱动力矩。在此过程中,利用人体五杆模型,对人体下肢的运动进行了运动学和动力学分析,通过Matlab/Simulink软件编程求解,得到了人体下肢关节在连续步态周期内关节力矩的变化,通过对比计算获得的支撑踝关节力矩值与足底力传感器实测值,证明了关节力矩求解方法的正确性,保障了外骨骼机器人能够根据此力矩对穿戴者提供助力。
The method uses joint displacement sensors and inertial navigation unit on lower extremity exoskeleton to collect human motion information. Gets the relative angle of hip, knee and the posture and acceleration of torso. With inverse dynamics real - time calculating the joint driving torque of the wearers. In the procedure,with the 5 - bar human model the kinematics and dynamics of human limb's movement were analyzed. By Matlab / Simulink programming to obtain the curve of the joint torque of human lower limb joints in successive gait cycle. In order to prove the Correctness of the result,compare the joint torque of supporting leg ankle solved by lagrange dynamics equations with the ankle torque which was calculated by the plantar force measured during the experiment, the feasibility of the solving method was proved. Exoskeleton robot assiste the wearer with the torques information.
出处
《机械与电子》
2015年第10期71-75,共5页
Machinery & Electronics