期刊文献+

双U型管束模型换热器的流动和传热特性 被引量:6

Flow and heat transfer performance of double U-shaped-tubes modeled heat exchanger
原文传递
导出
摘要 为了研究双U型管束模型换热器的流动和传热性能,通过低速高温风洞的模型实验和Fluent-CFD数值计算,得到了换热器的管型和安装角对换热器压降和回热效率的影响规律。结果表明:在相同的双U型管管内气流平均流动速度下,椭圆管换热器的管内流动压降高于圆管换热器的,相对增加幅度在50%~60%之间;对于外部流动,换热器安装角度增大所诱导的外部流动压降显著增加,在换热器30°的安装角下,椭圆形管束的低阻流动型面得以充分体现,其外部流动压降较圆形管束换热器可以降低约50%;随着换热器安装角的增加,换热器回热效率具有明显的提高;相对换热器安装角,换热器管型对回热效率的影响较小,集气管的进气-出气方式对双U型管束换热器的回热效率具有较显著的影响。 In order to investigate the flow and heat transfer performances of double U-shaped-tubes modeled heat exchanger,model experiments were conducted in a low-speed high-temperature wind tunnel and numerical calculations were also conducted using Fluent-CFD software.The effects of tube cross-sectional shape and heat exchanger inclined angle on the pressure drop and recuperator effectiveness were obtained.The results show that the internal pressure drop for the elliptictube heat exchanger is increased by about 50%-60%relative to the circular-tube heat exchanger at the same averaged flow velocity inside the U-shaped tube.For the external flow,the pressure drop is significantly increased as the increase of heat exchanger inclined angle.At inclined angle of 30°,the pressure drop outside the elliptic-tube heat exchanger is significantly lower than that of the circular-tube heat exchanger with approximately 50% decrease.As the heat exchanger inclined angle increases,the recuperator effectiveness is significantly improved.By comparison with the effect of inclined angle,the tube shape has a weak influence on the recuperator effectiveness.The internal flow entering-gathering mode has moderate effect on the recuperator effectiveness of U-shaped-tubes heat exchanger.
出处 《航空学报》 EI CAS CSCD 北大核心 2015年第12期3832-3842,共11页 Acta Aeronautica et Astronautica Sinica
关键词 U型管换热器 安装角度 管截面形状 压降 回热效率 U-shaped-tubes heat exchanger inclined angle tube cross-sectional shape pressure drop recuperator effectiveness
  • 相关文献

参考文献20

  • 1Kyprianidis K, C-ronstedt T, Ogaji S, et al. Assessment of future aero engine designs with intercooled and inter- cooled recuperated cores[J]. ASME Journal of Engineer ing for Gas Turbines and Power, 2011, 133(1): 011701- 1-10. 被引量:1
  • 2Andriani R, Gamma F, Ghezzi U. Numerical analysis of intercooled and recuperated turbofan engine[J]. Interna tionalJournal of Turbo and Jet Engines, 2011, 28(2):139-146. 被引量:1
  • 3McDonald C F, Rodgers C. Heat-exchanged propulsion gas tnrbines: A candidate for future lower SFC and re- duced-emission military and civil aero-engines, ASME GT2009 5915[R]. NewYork:ASME, 2009. 被引量:1
  • 4龚昊,王占学,康涌,黄红超,李刚团.间冷回热航空发动机性能计算与分析[J].航空动力学报,2014,29(6):1453-1461. 被引量:16
  • 5曹梦源,唐海龙,陈敏.中冷回热航空涡扇发动机热力循环初步分析[J].航空动力学报,2009,24(11):2465-2470. 被引量:13
  • 6Schoenenborn H, Elbert E, Simon B, et al. Thermo-me chanical design of a heat exchanger for a recuperative aero- engine[J]. ASME Journal of Engineering for Gas Turbine and Power, 2006, 128(11): 736-744. 被引量:1
  • 7JeongJ H, KimLS, LeeJ K, et al. Review of heat ex- changer studied for high-efficiency gas turbines, ASME GT2007-28071[R]. New York: ASME, 2007. 被引量:1
  • 8Choi B I, Kim K S,Man Y H, et al. Performance analysis and optimal design of heat exchangers used in high tem- perature and high pressure system[C]//Proceedings of the ASME Turbo Expo, 2008: 501-507. 被引量:1
  • 9Min J K, Jeong J H, Ha M Y, et al. High temperature heat exchanger studies for applications to gas turbines[J]. Heat Mass Transfer, 2009, 46(2): 175-186. 被引量:1
  • 10DooJ H, Ha M Y, Min J K, et al. An investigation of cross-corrugated heat exchanger primary surfaces for ad- vanced intercooled-cycle aero engines (part-Ⅰ: novel geom- etry of primary surface)[J]. International Journal of Heat and Mass Transfer, 2012, 55(19-20): 5256-5267. 被引量:1

二级参考文献18

  • 1曹梦源,唐海龙,陈敏.中冷回热航空涡扇发动机热力循环初步分析[J].航空动力学报,2009,24(11):2465-2470. 被引量:13
  • 2McDonald C F,Massardo A F,Rodgers C,et al. Recupera- ted gas turbine aeroengines:Part Ⅰ early development ac- tivities[J]. Aircraft Engineering and Aerospace Technolo- gy,2008,8(2) :139-157. 被引量:1
  • 3McDonald C F, Massardo A F, Rodgers C, et al. Recupera- ted gas turbine aeroengines:Part Ⅱ engine design studies following early development testing[J]. Aircraft Engineer- ing and Aerospace Technology, 2008,8(3) : 280-294. 被引量:1
  • 4McCarthy L S,Scott M L. The WR-21 intercooled recuper- ated gas turbine engine-operation and integration into royal navy type 45 destroyer power system[R]. ASME Paper GT-2002-30266,2002. 被引量:1
  • 5Wilfert G, Sieber J, Rolt A, et al. New environmental friendly aero engine core concepts [ R]. ISABE-2007- 1120,2007. 被引量:1
  • 6Rolt A M, Kyprianidis K G. Assessment of new aeroen- gine core concepts and technologies in the EU framework 6 NEWAC programme[ R]. Nice, France: 27th International Congress of the Aeronautical Sciences,2010. 被引量:1
  • 7Boggia S,Rud K. Intereooled recuperated aero engine[R]. Munchen, Germany : MTU Aero Engines, 2004. 被引量:1
  • 8McDonald C F, Massardo A F, Rodgers C, et al. Recupera- ted gas turbine aeroengines:Part Ⅲ engine concepts for re- duced emissions, lower fuel consumption, and noise abate- ment[J]. Aircraft Engineering and Aerospace Technology, 2008,8(4) :408-426. 被引量:1
  • 9Gmelin T C, Htittig G, Lehmann O. Summarized descrip- tion of aircraft efficiency potentials taking account of cur- rent engine technology and foreseeable medium-term de- velopments[R]. Berlin, Germany.. German Federal Minis- try for the Environment,Nature Conservation and Nuclear Safety, FKZ UM 0706 602/01,2008. 被引量:1
  • 10Dewanji D, Rao A G, Buijtenen J P. Conceptual study of future aero-engine concepts [J]. International Journal of Turbo and Jet Engines,2009,26(4) :263-276. 被引量:1

共引文献21

同被引文献34

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部