期刊文献+

蒸发冷凝器在太阳能复合制冷系统中的仿真研究

Simulation study on the evaporative-condenser in solar assisted refrigeration system
原文传递
导出
摘要 基于EES软件,利用分布参数法建立蒸发冷凝器仿真计算模型,并实验验证模型的准确性,选取R236fa为工质,计算分析不同管长、管径、微肋等结构参数变化对蒸发冷凝器换热性能的影响。研究表明:蒸发冷凝器的结构参数对其换热性能影响较大,在文中的研究工况下,长度为7~9m,内管外径为9~11mm,外管内径为30~36mm时,蒸发冷凝器换热效果最优。另外,微肋管的齿高、螺旋角、齿顶角变化也会影响蒸发冷凝器的换热性能,换热量随着肋高和螺旋角的增大而增大,随着齿顶角的增大而减小,本研究可为下一步蒸发冷凝器的优化设计提供参考和理论依据。 In this paper the evaporative-condenser performance analysis model was established based on the distributed parameter method and verified with experimental test data. R236 fa was selectedas refrigerant. The influence of structure parameters such as different length,inner and outside pipe diameter,tooth depth,spiral angle and apex angle on the heat exchange performance was analysed. Research shows that the heat transfer performance is influenced by the changes of structure parameters. The heat transfer of evaporative-condenser can be achieve optimal effect as the length of the pipe is from 7m to 9m,inner tube diameter is between 9mm and 11 mm,outside tube diameter is between 30 mm and 36 mm. Meanwhile,the heat transfer performance is influenced by the changes of tooth depth,spiral angle and tooth apex angle of slight ribbed tube. The heat transfer increases with tooth depth and spiral angle increase,and decreases with tooth apex angle increase. This paper can provide the reference and theoretical basis for evaporative-condenser optimized design.
出处 《低温与超导》 CAS 北大核心 2015年第12期67-72,共6页 Cryogenics and Superconductivity
基金 国家自然科学基金(51306214) 河南省高校科技创新人才计划(14HASTIT003) 河南省科技攻关项目(142102210286 142106000135) 河南省供热空调开放实验室(2013HAC202)项目
关键词 蒸发冷凝器 仿真 结构参数 优化 Evaporative-condenser Solar assisted refrigeration system Simulation Experimental
  • 相关文献

参考文献17

  • 1Selvaraju A, Mani A. Experimental investigation on R134 avapour ejector refrigeration system[J]. Interna- tional Journal of Refrigeration, 2006, 29 ( 7 ) : 1160 - 1166. 被引量:1
  • 2Vidal H, Colle S, et al. Modelling and hourly simulation of a solar ejector cooling system [J]. Applied Thermal Engineering, 2006,26 (7) : 663 - 672. 被引量:1
  • 3Yapici R,Yetisen C C. Experimental study on ejector re-frigeration system powered by low grade heat[J]. Energy Conversion and Management, 2007,48 (5) : 1560 - 1568. 被引量:1
  • 4Petrenko V O, Huang B I, Ierin V O. Design theoretical study of cascade CO2 sub - critical mechanical compres- siorr/butane ejector cooling cycle [J]. International Journal of Refrigeration, 2011,34 : 1649 - 1656. 被引量:1
  • 5Gonzalez Bravo H E, Dorantes Rodriguez R, et al. State of art of simple and hybrid jet compression refrigeration systems and the working fluid influence [J]. Internation- al Journal of Refrigeration, 2012,35:386 - 396. 被引量:1
  • 6Zheng H F, Fan X W, et al. Solar Ejector Refrigerant System in the Middle Region Residential Building of Chi- na[J]. Thermal Science, 2014,18(5) :1643 - 1647. 被引量:1
  • 7郑慧凡,范晓伟,李安桂.郑州地区典型气象条件下的模拟太阳能喷射制冷实验[J].太阳能学报,2011,32(8):1169-1173. 被引量:4
  • 8何曙,李勇,李海峰,等.太阳能喷射制冷系统性能模拟及其应用[J].制冷技术,2008,36(6):60-65. 被引量:2
  • 9李风雷,曹波,程志雯,田琦.基于一维模型的喷射制冷系统性能计算分析[J].太原理工大学学报,2013,44(2):142-146. 被引量:6
  • 10任艳玲,李风雷.冷热双蓄太阳能喷射—压缩耦合制冷系统性能分析[J].建筑科学,2013,29(12):114-119. 被引量:2

二级参考文献47

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部