期刊文献+

多核处理器上的频繁图挖掘方法 被引量:4

Frequent Graph Mining on Multi-Core Processor
下载PDF
导出
摘要 多核处理器已经成为现代处理器的主流体系结构,频繁图挖掘(frequent graph mining)是一个具有很多应用领域的研究热点问题,充分利用多核处理器的能力加速频繁图挖掘过程具有研究意义和实用价值.提出一种基于深度优先遍历的并行挖掘模式,使用任务池维护工作负载,提高数据的时间局部性并减少大量的内存使用;设计缓存敏感的点边数组,连续排列线程的记录数据,减少原始图的数据量,降低缓存缺失率;为了减少锁的竞争,使用灵活的任务获取方法寻找工作任务,采用内存管理队列降低频繁的内存分配释放开销.在模拟数据和真实数据上进行了详细的实验研究和性能分析,结果表明提出的技术能够有效减少内存占用并降低缓存缺失,在具有12个核心的机器上可以达到10倍的加速比. Multi-core processors have become the mainstream of modern processor architecture.Frequent graph mining is a popular problem that has practical applications in many domains.Accelerating the mining process of frequent graphs by taking full advantage of multi-core processors has research significance and practical values.A parallel mining strategy based on depth-first search(DFS)is proposed and a task pool is used to maintain the workload.Compared with the method that utilizes breadth-first search,data temporal locality performance can be improved and a large amount of memory is saved.Cache conscious node-edge arrays in which record data of a thread are arranged continuously are designed to decrease the data size to represent original graphs and cache miss ratio.False sharing that severely degrades performance is mostly eliminated.In order to reduce lock contentions,a flexible method is explored to look for work tasks and memory management queues are utilized to reduce the overhead due to frequent memory allocation and free operations.A detailed performance study and analysis is conducted on both synthetic data and real data sets.The results show that the proposed techniques can efficiently lower memory usage and cache misses and achieve a10-fold speedup on a 12-core machine.
出处 《计算机研究与发展》 EI CSCD 北大核心 2015年第12期2844-2856,共13页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61402041 41301402)
关键词 频繁图挖掘 多核处理器 缓存 并行技术 深度优先遍历 frequent graph mining multi-core processor cache parallel techniques depth-first search(DFS)
  • 相关文献

参考文献26

  • 1Inokuchi A, Washio T, Motoda H. An apriori-based algorithm for mining frequent substructures from graph data [C] //Proc of the 4th European Conf on Principles of Data Mining and Knowledge Discovery. Beriin; Springer, 2000: 13-23. 被引量:1
  • 2Kuramochi M, Karypis G. Frequent subgraph discovery [C] //Proc of the 1st IEEE Int Conf on Data Mining. Los Alamitos, CA: IEEE Computer Society, 2001: 313-320. 被引量:1
  • 3Borgelt C, Berthold M R. Mining molecular fragments: Finding relevant substructures cf molecules [C]//Proe of the 2nd IEEE Int Conf on Data Mining. Los Alamitos, CA: IEEE Computer Society, 2002:51-58. 被引量:1
  • 4Yan Xifeng, Han Jiawei. gSpan: Graph-based substructure pattern mining [C] //Proc of the 2nd IEEE Int Conf on Data Mining. Los Aiamitos, CA: IEEE Computer Society, 2002: 721-724. 被引量:1
  • 5Huan Jun, Wang Wei, Prins J. Efficient mining of frequent subgraphs in the presence of isomorphism [C]//Proc of the 3rd IEEE Int Conf on Data Mining. Los Alamitos, CA; IEEE Computer Society, 2003:549-552. 被引量:1
  • 6Nijssen S, Kok J N. A quickstart in frequent structure mining can make a difference [C] //Proe of the 10th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2004: 647-652. 被引量:1
  • 7Hennessy J L, Patterson D A. Computer Architecture: A Quantitative Approach[M]. 4th ed. San Francisco, CA: Morgan Kaufmann, 2006. 被引量:1
  • 8栾华,杜小勇,王珊.缓存敏感的封闭冰山立方体计算[J].软件学报,2010,21(4):620-631. 被引量:4
  • 9Worlein M, Meinl T, Fischer I, et al. A quantitative comparison of the subgraph miners MoFa, gSpan, FFSM, and Gaston [C] //Proc of the 9th European Conf on Principles and Practice of Knowledge Discovery in Databases. Berlin: Springer, 2005:392-403. 被引量:1
  • 10Buehrer G, Parthasarathy S. Adaptive parallel graph mining for CMP architectures [C]//Proc of the 6th IEEE Int Con{ on Data Mining. Los Alamitos, CA: IEEE Computer Society, 2006:97-106. 被引量:1

二级参考文献2

共引文献9

同被引文献23

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部