期刊文献+

基于分段氨基酸组成预测β-琼胶酶的最适温度

Based on the composition of segmented amino acid to predict the optimum temperature of β-agarases
原文传递
导出
摘要 为了探究氨基酸组成对β-琼胶酶催化底物时的最适温度的影响,分别统计分析了酶全长、N端、M段及C端序列中20种氨基酸出现的频次。以支持向量机回归构建了氨基酸组成与β-琼胶酶最适温度的模型,10-倍交叉验证获得最小平均绝对误差(MAE),线性核函数的M端为4.36℃,RBF核函数的M端为4.16℃,独立样本测试得到N端的MAE分别为3.12℃和4.43℃。上述结果表明,该酶N端和M端是影响其最适温度的重要因素。通过比较最适温度为60℃和30℃β-琼胶酶的高级结构,推测M端和N端中3个螺旋结构是影响该酶最适温度的重要因素。 To explore how the composition of amino acids influence the optimum temperature ofβ-agarases, we counted and calculated the frequences the amino acids for full-length, N terminal, M section and C-terminal sequence ofβ-agarases respectively. And then, we constructed support vector regression model to represent the relationships between amino acid composition and the optimum temperature. Based on the mean absolute error (MAE) of 10-fold cross-validation, the M section of linear and RBF kernel is the best, with the MAEs of 4.36℃ and 4.16℃, respectively. While the the minimum MAE of the independent test was obtained by the N terminal, with the MAEs of 3.12℃ and 4.43℃ respectively. The results showed that N terminal and M section ofβ- agarases might have great influence on its optimum temperature. By comparing the 3D structure of theβ-agarases with the optimum temperature of 30℃ and 60℃, we speculated that there were 3 helical structure differences in N terminal and M section, which should be the key factors that affect the thermostability of theβ- agarases.
出处 《计算机与应用化学》 CAS 2015年第12期1513-1518,共6页 Computers and Applied Chemistry
基金 国际海域资源调查与开发"十二五"重大项目(DY125-15-T-06) 国家高技术研究发展计划(2012AA092103) 福建省自然科学基金资助项目(2013J01048) 华侨大学研究生创新能力培养项目资金
关键词 Β-琼胶酶 氨基酸组成 最适温度 支持向量机回归 β-agarases composition of amino acids optimum temperature support vector regression
  • 相关文献

参考文献36

  • 1Oh C, Nikapitiya C, Lee Y, et al. Molecular cloning, characterization and enzymatic properties of a novel β-agarase from a marine isolate Psudoalteromonas SP. AG52. Braz J Microbiol. 2010,41(4):876-889. 被引量:1
  • 2Morrice L M, McLean M W, Williamson F B, et al. beta-agarases I and II from Pseudomonas atlantica, purifications and some properties. Eur J Biochem. 1983, 135(3):553-558. 被引量:1
  • 3Ma C, Lu X, Shi C, et al. Molecular cloning and characterization of a novel beta-agarase, AgaB, from marine Pseudoalteromonas sp. CY24. J Bioi Chem. 2007, 282(6):3747-54. 被引量:1
  • 4Fu X T, Kim S M. Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Mar Drugs. 2010, 8(1):200-218. 被引量:1
  • 5Xie W, Lin B, Zhou Z, et al. Characterization of a novel β-agarase from an agar-degrading bacterium Catenovulum sp. X3. Appl Microbiol Biotechnol. 2013, 97(11):4907-15. 被引量:1
  • 6Suzuki H, Sawai Y, Kawai K, et al. Purification and characterization of an extracellular β-agarase from Bacillus sp. MK03. J Biosci Bioeng, 2003, 95(4):328-34. 被引量:1
  • 7Dong J, Tamaru Y, Araki T. A unique beta-agarase, AgaA, from a marine bacterium, Vibrio sp. strain PO-303. Appl Microbiol Biotechnol, 2007, 74(6):1248-55. 被引量:1
  • 8Yang J I, Chen L C, Shih Y Y, et aI. Cloning and characterization of beta-agarase AgaYT from Flammeovirga yaeyamensis strain Y;T. J Biosci Bioeng, 2011,112(3):225-32. 被引量:1
  • 9Henrissat B. A classfication of glycosyl hydrolases based on no acid similarities. Eur J Biochem, 1991,280(2):309-316. 被引量:1
  • 10Chi W J, Chang Y K, Hong S K. Agar degradation by microorganisms and agar-degrading enzymes. Appl Microbiol Biotechnol, 2012, 94(4):917-930. 被引量:1

二级参考文献36

  • 1王顺民.嗜热酶的研究及其在食品等相关工业中的应用[J].山西食品工业,2004(3):2-4. 被引量:3
  • 2吴穗洁,吴文林,刘斌.嗜热酶耐热机制及提高酶热稳定性的研究进展[J].亚热带农业研究,2006,2(4):293-297. 被引量:7
  • 3丁彦蕊,蔡宇杰,须文波.氢键与蛋白质耐热性关系的研究[J].计算机与应用化学,2007,24(5):641-644. 被引量:4
  • 4Littlechild JA,Guy J,Connelly S,Mallett L,Waddell S, Rye CA,Line K,Isupov M. Natural methods of protein stabilization : thermostable biocatalysts [J ]. Biochem Soc Trans. 2007 Dec ; 35 (Pt 6 ) : 1558-63. Review. 被引量:1
  • 5Ghosh M,A M Grunden,D M Dunn,et al. Characterization of native and recombinant froms of an unusual cobaltdependent proline dipeptidase (prolidase)from the hyperthermophilic archaeon Pyrococcus furiosus [J]. J. Bacteriol. 1998,180:4781-4789. 被引量:1
  • 6Turner P,Mamo G,Karlsson EN. Potential and utilization of thermophiles and thermostable enzymes in biorefining [ J ]. Microb Cell Fact. 2007,15 : 6:9. 被引量:1
  • 7Siddiqui KS,Cavicchioli R. Cold-adapted enzymes [J]. Annu Rev Biochem,2006,75:403-433. 被引量:1
  • 8Seung Pil Pack,Young Je Yoo. Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins [J]. Journal of Bioteehnology. 2004,111 : 269-277. 被引量:1
  • 9Synowiecki J,Grzybowska B,Zdziebto A. Sources, properties and suitability of new thermostable enzymes in food processing [J]. Crit Rev Food Sci Nutr. 2006,46(3 ) : 197-205. 被引量:1
  • 10Lazaridis T,Karplus M. "New view"of protein folding reconciled with the old through multiple unfolding simulations[J]. Science. 1997,278:1928-1931. 被引量:1

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部