期刊文献+

改进的v-支持向量回归机的v解路径算法 被引量:2

Improved v solution path for v-support vector regression
下载PDF
导出
摘要 v-支持向量回归机(v-support vector regression,v-SVR)的对偶形式与ε-支持向量回归机的对偶形式相比增加了一个额外的不等式约束,截止目前还没有找到有效且可行的v-SVR的v解路径算法。针对Loosli等人提出的v-SVR的v解路径算法存在路径不可更新的问题,提出了改进的v-SVR的v解路径算法。该算法基于v-SVR的修改形式及Karush-Kuhn-Tucker(KKT)条件,通过引入新的变量和附加项的策略,能够有效地避免在绝缘增量调整过程中存在的冲突和异常,并最终经过有限次数迭代拟合出整个v解路径。理论分析和仿真结果表明,该算法是有效且可行的。 In comparison with the dual formulation ofε-support vector machine,the dual of v-support vector regression(v-SVR)has an extra inequality constraint.To date,there is no effective and feasible vsolution path for v-SVR.To solve the infeasible updating path problem of the vsolution path for v-SVR,which was first proposed by Loosli et al,an improved vsolution path for v-SVR is proposed.Based on the modified formulation of v-SVR and the Karush-Kuhn-Tucker(KKT)conditions,the strategy of using a new introduced variable and an extra term can avoid the conflicts and exceptions effectively during the adiabatic incremental adjustments.Finally,the proposed algorithm can fit the entire vsolution path within the finite number of iterations.Theoretical analysis and simulation results demonstrate that the proposed algorithm is effective and feasible.
作者 顾斌杰 潘丰
出处 《系统工程与电子技术》 EI CSCD 北大核心 2016年第1期205-214,共10页 Systems Engineering and Electronics
基金 国家自然科学基金(61273131) 江苏省产学研联合创新资金项目(BY2013015-39)资助课题
关键词 机器学习 模型选择 v-支持向量回归机 v解路径 machine learning model selection v-support vector regression(v-SVR) vsolution path
  • 相关文献

参考文献22

  • 1################ 被引量:1
  • 2Anguita D, Ridella S, Rivieccio F. K-fold generalization capabil ity assessment for support vector classifiers[C]//Proc, of the IEEE International Joint Conference on Neural Networks,2005:855 -858. 被引量:1
  • 3################ 被引量:1
  • 4Keerthi S S, Sindhwani V, Chapelle O. An efficient method for gra- dient-based adaptation of hyperpararaeters in SVM models[C]// Proc. of the Twentieth Annual Conference on Neural Information Processing Systems, 2007 : 673 - 680. 被引量:1
  • 5Hastie T, Rosset S, Tibshirani R, et al. The entire regulariza- tion path for the support vector machine[J]. Journal of Ma- chine Learning Research, 2004, 5 1391 - 1415. 被引量:1
  • 6Gunter L, Zhu J. Computing the solution path for the regular ized support vector regression[C]//Proc, of the Advances in Neural Information Processing Systems, 2005 483 - 490. 被引量:1
  • 7Gunter L, Zhu J. Efficient computation and model selection for the support vector regression[J]. Neural Computation, 2007, 19(6): 1633-1655. 被引量:1
  • 8Wang G, Yeung D Y, Loehovsky F H. A new solution path al- gorithm in support vector regression[J]. IEEE Trans. on Neu ral Networks, 2008, 19(10) : 1753 - 1767. 被引量:1
  • 9################ 被引量:1
  • 10################ 被引量:1

二级参考文献20

  • 1Vapnik V. Statistical Learning Theory. Now York: Wiley, 1998. 被引量:1
  • 2Keerthi S, Sindhwani V, Chapelle O. An efficient method for gradient-based adaptation of hyperparameters in SVM models. In: Scholkopf B, Platt J, Hoffman T, eds. Advances in Neural Information Processing Systems 19. Cambridge: MIT Press, 2007. 673-680. 被引量:1
  • 3Bousquet O, Elisseeff A. Stability and generalization. Journal of Machine Learning Research, 2002,2(Mar.):499-526. [doi: I0. 1162/153244302760200704]. 被引量:1
  • 4Anguita D, RideUa S, Rivieceio F. K-Fold generalization eapabilityassessment for support vector classifiers. In: Proc. of the Int'l Joint Conf. on Neural Networks. Montreal, 2005. 855-858. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1555964& isnumber=33090 [doi: 10.1109/IJCNN.2005.1555964]. 被引量:1
  • 5Hastic T, Rosset S, Tibshirani R, Zhu J. The entire regularization path for the support vector machine. Journal of Machine Learning Research, 2004,5:1391-1415. 被引量:1
  • 6Zhu J, Rosset S, Hastie T, Tibshirani R. 1-Norm support vector machines. In: Advances in Neural Information Processing Systems. 2003. http://books.nips.cc/papers/files/nips 16/NIPS2003_AA07.pdf. 被引量:1
  • 7Gunter L, Zhu J. Efficient computation and model selection for the support vector regression. Neural Computation, 2007,19(6): 1633-1655. [doi:10.1162/neco.2007.19.6.1633]. 被引量:1
  • 8Gunter L, Zhu J. Computing the solution path for the regularized support vector regression. In: Advances in Neural Information Processing Systems, Vol. 18. Cambridge: MIT Press, 2005. 483-490. http://books.nips.cc/papers/files/nips 18/NIPS2005_0360.pdf. 被引量:1
  • 9Wang G, Yeung DY, Lochovsky FH. A new solution path algorithm in support vector regression. IEEE Trans. on Neural Networks, 2008,19(10):1753-1767. [doi: 10.1109/TNN.2008.2002077]. 被引量:1
  • 10Wang G, Yeung DY, Lochovsky FH. A kernel path algorithm for support vector machines. In: Proc. of 24th Int'l Conf. on Machine Learning. 2007. 951-958. http://www.machinelearning.org/proceedings/icml2OOT/papers/60.pdf Idol: 10.1145/1273496.1273616]. 被引量:1

共引文献3

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部