期刊文献+

无穷格点上长波-短波共振方程组核截面的分形维数估计

Finite Fractal Dimension of Kernel Sections for Long-Wave-Short-Wave Resonance Equations on Infinite Lattices
下载PDF
导出
摘要 该文证明了无穷格点上长波-短波共振方程组核截面的分形维数估计. This paper proves an upper bound of fractal dimension of the kernel sections for the long-wave-short-wave resonance equations on infinite lattices.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2015年第6期1146-1157,共12页 Acta Mathematica Scientia
基金 国家自然科学基金(11271290 51279202 31370381) 国家重点基础研究发展计划(973)项目(2015CB057905)资助
关键词 格点长波-短波共振方程组 核截面 分形维数. Lattice long-wave-short-wave resonance equations Kernel sections Fractal dimension.
  • 相关文献

参考文献52

  • 1Ahmed Abdallah Y. Exponential attractors for first-order lattice dynamical systems. J Math Anal Appl, 2008, 839:217-224. 被引量:1
  • 2Ahmed Abdallah Y. Uniform exponential attractors for second order non-autonomous lattice dynamical systems. Comm pure Appl Anal, 2009, 8:803-813. 被引量:1
  • 3Angulo J, Montenegro J F B. Existence and evenness of solitary-wave solutions for an equation of short and long dispersive waves. Nonlinearity, 2000, 13:1595-1611. 被引量:1
  • 4Benney D J. A general theory for interactions between short and long waves. Stud Appl Math, 1977, 56: 81-94. 被引量:1
  • 5Bekiranov D, Ogawa T, Ponce G. On the well-posedness of Benney's interaction equation of short and long waves. Adv Differential Equations, 1996, 1:919-937. 被引量:1
  • 6Bekiranov D, Ogawa T, Ponce G. Interation equations for short and long dispersive waves. J Funct Anal, 1998, 158:357-388. 被引量:1
  • 7Beyn W J, Pilyugin S Yu. Attractors of reaction diffusion systems on infinite lattices. J Dyna Differential Equations, 2003, 15:485-515. 被引量:1
  • 8Bates P W, Chen X, Chmaj A. Traveling waves of bistable dynamics on a lattice. SIAM J Math Anal, 2003, 35:520-546. 被引量:1
  • 9Bates P W, Lisei H, Lu K. Attractors for stochastic lattice dynamical systems. Stoch Dyna, 2006, 6:1 -21. 被引量:1
  • 10Chepyzhov V V, Vishik M I. Attractors for Equations of Mathematical Physics. Providence, RI: Amer Math Soc. 2002. 被引量:1

二级参考文献36

  • 1Chate H,Courbage M. Lattice systems[J].Physical Review D,1997.1-612. 被引量:1
  • 2Chow S N. Lattice Dynamical Systems.Lecture Notes in Math,1822[M].Beilin:Springer-Verlag,2003. 被引量:1
  • 3Keener J P. Propagation and its failure in coupled systems of discrete excitable cells[J].SIAM Journal of Applied Mathematics,1987.556572. 被引量:1
  • 4Erneux T,Nicolis G. Propagating waves in discrete bistable reaction diffusion systems[J].Physical Review D,1993.237-244. 被引量:1
  • 5Kapval R. Discrete models for chemically reacting systems[J].Journal of Mathematical Chemistry,1991.113163. 被引量:1
  • 6Chow S N,Mallet-Paret J. Pattern formation and spatial chaos in lattice dynamical systems[J].IEEE Transactions on Circuits and Systems,1995.746751. 被引量:1
  • 7Fabiny L,Colet P,Roy R. Coherence and phase dynamics of spatially coupled solid-state lasers[J].Physical Review A,1993.42874296. 被引量:1
  • 8Hillert M. A solid-solution model for inhonogeneous systems[J].Acta Metallurgica,1961.525535. 被引量:1
  • 9Chua L O,Roska T. The CNN paradigm[J].IEEE Transactions on Circuits and Systems,1993.147156. 被引量:1
  • 10Chua L O,Yang Y. Cellular neural networks:theory[J].IEEE Transactions on Circuits and Systems,1988,(10):12571272.doi:10.1109/31.7600. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部