期刊文献+

面向ScholarSpace知识库的关键词查询方法 被引量:1

Keyword search approach for knowledge base in ScholarSpace
下载PDF
导出
摘要 知识库中存储着大量关于真实世界中的实体信息及实体之间的关系,随着规模的不断增长,其应用也愈发广泛。另一方面,由于大量互联网用户通过关键词描述问题和查询意图,因此如何让知识库具备更好的关键词查询应答能力,成为了研究的热点。从中文知识库的构建入手,提出了一套完整的面向中文限定领域知识库的关键词检索框架,实现并改进了基于模板的关键词查询转换方法,提出了基于语义的知识库释义和实体索引方法,提高了关键词映射能力。同时在SPARQL转换过程中采用了缺失关系索引,提高了转换成功率,提升了能够处理的查询数量。同时在学术空间ScholarSpace上对该框架进行了系统实现,取得了良好的应用效果。 Knowledge bases(KB) store large amount of structured information about the entities and their relationships.As the scale of KBs increased, their application also varied. On the other side, large amount of users describe their question or query intention by submitting keyword queries. Thus enabling KB to answer these keyword queries becomes of crucial importance. A framework from building a Chinese KB to answering keyword search over it was established. A novel approach based on query template to translate the keyword queries into structured queries was proposed. A semantic based paraphrase and index approach to improve the result of query term mapping and an absent predicate index to deal with the predicate absence during the query translation step was proposed. Significant improvement of the ability of translating keyword query to structured query was achieved. Finally the framework and approach was implemented in the ScholarSpace system and get a good performance.
出处 《通信学报》 EI CSCD 北大核心 2015年第12期28-36,共9页 Journal on Communications
基金 国家自然科学基金资助项目(61379050 91224008) 国家高技术研究发展计划("863"计划)基金资助项目(2013AA013204) 中国人民大学科学研究基金资助项目(11XNL010)~~
关键词 检索 查询转换 语义相似度 knowledge base keyword search query translation semantic similarity
  • 相关文献

参考文献18

  • 1MANOLA F, MILLER E. RDF Premier[S]. W3C Recommendation, 2004. 被引量:1
  • 2PRUD E, SEABORNE A. Sparql query language for rdIEB/OL]. b_ttp://www.w3.org/TR/rdf-sparql-query/,2006. 被引量:1
  • 3LEI Y, UREN V, MOTTA E. Semsearch: a search engine for the se- mantic Web[A]. Managing Knowledge in a World of Networks[C]. Springer Berlin Heidelberg, 2006.238-245. 被引量:1
  • 4SHEKARPOUR S, AUER S, NGOMO A C N, et al. Keyword-driven sparql query generation leveraging background knowledge[A]. Web Intelligence and Intelligent Agent Technology ONI-IAT), 2011 IEEE/WIC/ACM International Conference[C]. 2011.203-210. 被引量:1
  • 5POUND J, HUDEK A K, ILYAS I F, et al. Interpreting keyword que- ries over Web knowledge bases[A]. Proceedings of the 21st ACM In- ternational Conference on Information and Knowledge Manage- ment[C]. ACM, 2012.305-314. 被引量:1
  • 6YAHYA M, BERBERICH K, ELBASSUONI S, et al. Natural lan- guage questions for the Web of data[A]. Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and. 被引量:1
  • 7Computational Natural Language Learning[C]. Association for Computational Linguistics, 2012.379-390. ZOU L, HUANG R, WANG H, et al. Natural language question an-swering over rdf: a graph data driven approach[A]. Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data[C]. ACM, 2014. 313-324. 被引量:1
  • 8DING B, XU Y J, WANG S, et al. Finding top-k min-cost connected trees in databases[A]. Data Engineering, IEEE 23rd International Conference[C]. 2007.836-845. 被引量:1
  • 9TRAN T, WANG H, RUDOLPH S, et al. Top-k exploration of query candidates for efficient keyword search on graph-shaped (rdf) data[A]. Data Engineering, IEEE 25th International Conference[C]. 2009.405-416. 被引量:1
  • 10BHALOTIA C HULGERI A, NAKHE C, et al. Keyword searching and browsing in databases using BANKS[A]. Data Engineering, Pro- ceedings 18th International Conference[C]. 2002.431-440. 被引量:1

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部