期刊文献+

基于听觉脑电信号的脑卒中康复实验模式研究 被引量:7

Experimental mode of stroke rehabilitation based on auditory EEG
下载PDF
导出
摘要 目的本文设计了一种听觉刺激方法,即利用产生的左右手想象听觉脑电信号推断脑卒中患者的意图,控制手部康复机器人,以满足脑卒中患者的康复需求。方法实验对象为2名受试者,各进行80次实验。根据脑电信号的非平稳非线性特性,利用Hilbert-Huang变换法分析想象脑电信号的频率特性,以信号能量值为特征向量,利用支持向量机(support vector machine,SVM)算法识别左右手的动作模式。结果在与大脑运动感觉区域相关的C3、C4电极上,听觉脑电信号的事件相关去同步与事件相关同步现象明显,识别效果达80%以上。结论该听觉刺激方法具有较好的识别效果,可用于患有视觉障碍的脑卒中患者的康复训练。 Objective A auditory stimulus method was proposed in this paper. The auditory EEG of imaging left-right hand movement was used to infer the intention of the stroke patients. The aim of this work was to control the hand rehabilitation robot to satisfy the rehabilitation requirement of the stroke patients. Methods The experimental objects were two individuals and each one experimented 80 times. According to the non- stationary and non-linear feature of the EEG signals, Hilbert-Huang transform was applied to extract the frequency feature. The energy of the signal was used as the feature to recognize the movement of the left-right hand by using the SVM algorithm. Results The signals from C3 and C4 on the movement feeling regions of the brain showed that the event-related desynchronization and the event-related synchronization of the auditory EEG were significant and the recognition rates were above 80%. Conclusions This auditory stimulus method has preferable recognition that can be used for the rehabilitation training of the stoke patients with visual impairment.
出处 《北京生物医学工程》 2015年第6期607-611,共5页 Beijing Biomedical Engineering
基金 国家自然科学基金(51275101)资助
关键词 听觉脑电信号 视觉障碍 脑卒中训练 动作识别 HILBERT-HUANG变换 支持向量机 康复 auditory EEG visual impairment stoke training movement recognization Hilbert-Huangtransform support vector machine rehabilitation
  • 相关文献

参考文献11

二级参考文献46

  • 1赵治栋,唐向宏,赵知劲,潘敏,陈裕泉.基于Hilbert-Huang Transform的心音信号谱分析[J].传感技术学报,2005,18(1):18-22. 被引量:17
  • 2游荣义,陈忠.基于小波变换的脑电高阶奇异谱分析[J].电子测量与仪器学报,2005,19(2):58-61. 被引量:5
  • 3廖祥,尹愚,尧德中.基于连续小波变换和支持向量机的手动想象脑电分类[J].中国医学物理学杂志,2006,23(2):129-131. 被引量:14
  • 4万柏坤,綦宏志,赵丽,陈滨津,毕卡诗,陈骞.基于脑电Alpha波的脑-机接口控制实验[J].天津大学学报,2006,39(8):978-984. 被引量:18
  • 5PFURTSCHELLER G, LOPES DA SILVA F H. Eventrelated EEG/MEG synchronization and desynPhmniza: basic principles [ J ]. Clinical Neumphysiology, 1999, (110) :1842-1857. 被引量:1
  • 6PFURTSCHELLER G, NEUPER C, FLOTZINGER D, et al. EEG based discrimination between imagination of right and left hand movement [ J ]. Electroenceph. Clin.Neurophysiol, 1997, ( 103 ) :642-651. 被引量:1
  • 7PENGA Z K, TSE P W, CHU F L. A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing [J]. Mechanical Systems and Signal Processing, 2005, (5) :974-988. 被引量:1
  • 8HUANG M L, WU P D, LIU Y, et al. Application and contrast in brain-computer interface between HilbertHuang transform and wavelet transform[ C ]. The 9th International Conference for Young Computer Scientists, Hunan, China, 2008 : 1706-1710. 被引量:1
  • 9HUANG N, SHEN Z, LONG S, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[ J]. Proceedings of the Royal Society of London, 1998(454) :903 - 995. 被引量:1
  • 10BLANKERTZ B, DORNHEGE G, KRAULEDAT M, et al. The non-invasive berlin brain-computer interface: fast acquisition of effective performance in untrained subjects [ J]. NeuroImage, 2007, (37) :539-550. 被引量:1

共引文献77

同被引文献53

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部