期刊文献+

近红外光谱法快速测定制浆杨木的材性 被引量:2

Rapid Prediction of Pulp Wood Properties by Near-infrared Spectroscopy Technique
下载PDF
导出
摘要 用常规方法测定了4种常用制浆杨木的化学成分和基本密度,并采集了样品的近红外光谱。对光谱进行预处理后,运用偏最小二乘法和交互验证的方法,分别确定最佳主成分数并建立样品综纤维素、木素、苯-醇抽出物、基本密度的校正模型。独立验证中模型的决定系数(R2val)分别为0.9050、0.9098、0.9112、0.9165;预测均方根误差(RMSEP)分别为0.40%、0.42%、0.19%和0.0050 g/cm^3;相对分析误差(RPD)分别为3.24、3.33、3.36和3.46;绝对偏差(AD)分别为-0.49%~0.77%、-0.66%~0.63%、-0.28%~0.33%、-0.0094~0.0068 g/cm3,预测均方根误差和绝对偏差基本符合对误差的要求,4个模型能够满足制浆造纸中常用杨木材性的快速测定。 The chemical composition and basic density of four species of poplar which were widely used as raw material in pulping were determined by using traditional methods and the near-infrared( NIR) spectra of the samples were also collected. Partial least squares( PLS)method and cross-validation were used to confirm the best principal component numbers and build the calibration models for holocellulose,lignin,benzene ethanol extractive and basic density of poplar samples. The independent verification of the calibration models showed the coefficients of determination( R_(val)~2) were 0. 9050,0. 9098,0. 9112,0. 9165,respectively. The root mean square errors of prediction( RMSEP) were 0. 40%,0. 42%,0. 19%,0. 0050 g / cm^3,respectively. The relative percent deviations( RPD) were 3. 24,3. 33,3. 36 and3. 46,respectively. And the absolute deviations( AD) were- 0. 49% ~ 0. 77%,- 0. 66% ~ 0. 63%,- 0. 28% ~ 0. 33%,- 0. 0094 g / cm~3~0. 0068 g / cm~3,respectively. The root mean square error of prediction and the absolute deviation basically met the error requirement and the four calibration models could realize the rapid determination of the properties of poplar wood used in paper industry.
出处 《中国造纸》 CAS 北大核心 2015年第12期11-15,共5页 China Pulp & Paper
基金 国家林业局948项目“农林剩余物制机械浆节能和减量技术引进”(2014-4-31)
关键词 近红外光谱法 杨木 偏最小二乘法 化学成分 基本密度 near-infrared spectroscopy technique poplar partial least squares(PLS) chemical composition basic density
  • 相关文献

参考文献12

  • 1Tsuchikawa S, Schwanninger M. A review of recent near-infrared re- search for wood and paper ( part 2 ) [ J ]. Applied Spectroscopy Re- views, 2013, 48(7) : 560. 被引量:1
  • 2Schwanninger M, Rodrigues J C, Fackler K. A review of band assign- ments in near infrared spectra of wood and wood components [ J ].Journal of Near Infrared Spectroscopy, 2011, 19 (5) : 287. 被引量:1
  • 3崔宏辉,房桂干,梁龙,吴珽,刘雯雯.基于近红外光谱快速鉴别木材种类的研究[J].现代化工,2015,35(2):169-171. 被引量:13
  • 4王玉荣,费本华,傅峰,江泽慧,覃道春,杨忠.基于近红外光谱技术预测木材纤维长度[J].中国造纸,2008,27(6):6-9. 被引量:20
  • 5黎庆涛,李小梅,余炼,魏远安,王双飞,宋海农,杨崎峰,陈思益.近红外漫反射光谱法测定纸浆卡伯值[J].中国造纸,2004,23(4):8-10. 被引量:14
  • 6Downes G M, Drew D M. Climate and growth influences on wood for- mation and utilisation [ J ]. Southern Forests: a Journal of Forest Sci- ence, 2008, 70(2) : 155. 被引量:1
  • 7He W, Hu H. Prediction of hot-water-soluble extractive pentosan and cellulose content of various wood species using FT-NIR spectroscopy [J]. Bioresource Technology, 2013: 299. 被引量:1
  • 8Hodge G R, Woodbfidge W C. Global near infrared models to predict lignin and cellulose content of pine wood[J]. Journal of Near Infra_red Spectroscopy, 2010, 18(6): 367. 被引量:1
  • 9Mora C R, Schimleck L R. Kernel regression methods for the predic- tion of wood Properties of Pinus Taeda using near infrared spectroscopy [J]. Wood Science and Technology, 2010, 44(4) : 561. 被引量:1
  • 10唐秋,蒲俊文,姚胜,李琪.四种速生杨木制浆及漂白性能的研究[J].造纸科学与技术,2006,25(2):1-3. 被引量:8

二级参考文献37

共引文献48

同被引文献16

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部