期刊文献+

优化BP_AdaBoost算法及其交通事件检测 被引量:9

Improved BP_AdaBoost Algorithm and its Application in Traffic Incident Detection
下载PDF
导出
摘要 为了及时检测出高速公路上发生的交通事件,减少由于交通事件带来的损失,提出了一种基于遗传优化的BP_AdaBoost算法用于交通事件检测.提取高速公路上下游的车流量、车速与占有率作为BP(back propagation)神经网络的输入值,利用遗传算法全局搜索的性能优化BP神经网络初始连接权值和输出阈值,再通过多个新的BP神经网络弱分类器构建成AdaBoost强分类器,设计基于遗传算法优化BP_AdaBoost算法的交通事件分类器.以在东京高速公路采集的真实数据进行性能验证,试验结果表明,该算法可以提高BP弱分类器的性能,检测率达到97%,误报率降至3.34%,适用于高速公路交通事件的检测. In order to detect the traffic incidents occurred on highway and reduce the loss brought by traffic incident, this paper presents an improved BP_AdaBoost algorithm based on genetic algorithm for traffic incident detection. The inputs of BP (Back Propagation)neural network value are vehicle quantity, velocity and occupancy in upstream and downstream of highway. Genetic algorithm is used for each BP neural network classification model for optimizing weights and thresholds due to its performance of global searching. Theoptimized BP neural network model is applied as a new weak classifier, then through the AdaBoost algorithm, many of these new weak classifier is composed as strong classifier model. This improved algorithm is validated with real data from Tokyo expressway ultra-sonic sensors. The experimental results show that the algorithm can improve the performance of BP weak classifier. The detection rate of improved BP_ AdaBoost algorithm is up to 97%, and false alarm rate is lower to 3.34%. Experiment indicate that the algorithm is suitable for detecting highway traffic incidents.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第12期1829-1833,共5页 Journal of Tongji University:Natural Science
基金 国家"八六三"高技术研究发展计划(2013AA12A206) 国家自然科学基金(51008143) 江苏省高校自然科学基金(14KJD520002)
关键词 交通事件 遗传算法 神经网络 BP_AdaBoost算法 东京高速公路 traffic incident genetic algorithms neuralnetwork BP_AdaBoost algorithm Tokyo expressway
  • 相关文献

参考文献15

  • 1Zhang K, Taylor M A P. Towards universal freeway incident detection algorithms [J]. Transportation Research Part C: Emerging Technologies, 2006, 14(2) 68. 被引量:1
  • 2Cheu R L, Srinivasan D, Teh E T. Support vector machine models for freeway incident detection [ C] //Intelligent Transportation Systems, 2003. Singapore: IEEE, 2003 238- 243. 被引量:1
  • 3Jeong Y S, Castro-Neto M, Jeong M K, et al. A wavelet- based freeway incident detection algorithm with adapting threshold parameters[-J. Transportation Research Part C: Emerging Technologies, 2011, 19 ( 1 ) : 1. 被引量:1
  • 4张轮,杨文臣,刘拓,施奕骋.基于朴素贝叶斯分类的高速公路交通事件检测[J].同济大学学报(自然科学版),2014,42(4):558-563. 被引量:30
  • 5牛世峰,姜桂艳,李红伟,姜卉.基于纵向时间序列的快速路交通事件检测算法[J].哈尔滨工业大学学报,2011,43(2):144-148. 被引量:4
  • 6童飞..基于BP神经网络的水上交通事故预测及MATLAB实现[D].武汉理工大学,2005:
  • 7陈君,李聪颖,丁光明.基于BP神经网络的高速公路交通安全评价[J].同济大学学报(自然科学版),2008,36(7):927-931. 被引量:43
  • 8Yu L, Yu L, Wang J, et al. Back-propagation neural network for traffic incident detection based on fusion of loop detector and probe vehicle dataEC]//Natural Computation, 2008. 1CNC "08. Fourth International Conference on Natural Computation. Jinan: IEEE, 2008 : 116 -120. 被引量:1
  • 9Liu Z, Liu A, Wang C, et al. Evolving neural network using real coded genetic algorithm (GA) for multispectral image classification[-J. Future Generation Computer Systems, 2004, 20:1119. 被引量:1
  • 10Shen C, Wang L, Li Q. Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method[J]. Journal of Materials Processing Technology, 2007, 183:412. 被引量:1

二级参考文献47

共引文献76

同被引文献89

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部