期刊文献+

基于遥感技术的贵州省PM_(10)浓度年际变化监测与分析研究 被引量:2

Analysis and Monitor on Annual Changes of PM_(10) Concentration based on Remote Sensing in Guizhou Province
下载PDF
导出
摘要 文章选取MODIS数据,利用暗像元算法反演得到气溶胶光学厚度,利用BP神经网络算法通过网络训练和验证,得出PM10浓度遥感监测模型。利用该模型反演得到贵州省2014年3、7、10、12四个典型月份的PM10浓度值。结果表明模型训练和验证PM10浓度模拟值与实测值相关性系数(r)分别为0.76和0.62,利用此模型监测贵州省PM10近地面浓度是可行的;贵州省夏、秋季PM10浓度较低,春、冬季PM10浓度较高;贵州省的PM10浓度整体较低,空气质量较好。 This article selects the MODIS data using Dark Pixel Method to get the aerosol optical thickness.Then use the BP neural network to promote PM10 remote sensing monitoring model by network training and validation.This model was used to in-verse PM10 concentration in March, July, October and December four typical months of 2014 in Guizhou Province.Research re-sults show that the measured value are 0.76 and 0.62 in both training and validation.Above all, the model fits for Guizhou PM 10 monitoring.In summer and autumn, PM10 concentration is lower than in spring and winter.The concentration of PM10 in Guizhou Province is relatively low, and the air quality is better.
出处 《环境科学与管理》 CAS 2015年第8期114-118,共5页 Environmental Science and Management
基金 贵州省重大科技专项<"数字环保"关键技术研究及应用示范>项目(黔科合重大专项字[2012]6007)
关键词 BP神经网络 遥感 气溶胶光学厚度 PM10 BP neural network remote sensing AOD PM10
  • 相关文献

参考文献4

二级参考文献31

  • 1怀红燕,李正强,陈良富,王中挺,顾行发.基于地基偏振观测研究北京城区北部大气气溶胶特性变化[J].遥感学报,2008,12(3):490-498. 被引量:10
  • 2Penner J E, Dong X Q, Chen Y. Observational evidence of a change in radiative forcing due to the indirect aerosol effect. Nature, 2004, 427: 231-234. 被引量:1
  • 3Lohmann U, Lesins G. Stronger constraints on the anthropogenic indirect aerosol effect. Science, 2002, 298:1012-1015. 被引量:1
  • 4Li Z, Xia X, Cribb M, et al. Aerosol optical properties and their radiative effects in northern China. J Geophys Res, 2007, 112: D22S01, doi: 10.1029/2006JD007382. 被引量:1
  • 5Tollefson J. Asian pollution delays inevitable warming. Nature, 2010, 463:860-861. 被引量:1
  • 6Kaufman Y J, Tanr6 D, Boucher O. A satellite view of aerosols in the climate system. Nature, 2002, 419:215-223. 被引量:1
  • 7Kaufman Y J, Tanr6 D, Remer L A, et al. Remote sensing of tropospheric aerosol from EOS-MODIS over the land using dark targets and dynamic aerosol models. J Geophys Res, 1997, 102:17051-17067. 被引量:1
  • 8Kaufman Y J, Wald A E, Remer L A, et al. The MODIS 2.1 ixm Channel-Correlation with visible reflectance for use in remote sensing of aerosol. IEEE Trans Geosci Remote Sens, 1997, 35:1286-1298. 被引量:1
  • 9Kaufman Y J, Tanr6 D, Gordon H R, et al. Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. J Geophys Res, 1997, 102:16815-16830. 被引量:1
  • 10Remer L, Kaufman Y, Tanre D, et al. The MODIS aerosol algorithm, products, and validation. J Atmos Sci, 2005, 62:947-973. 被引量:1

共引文献86

同被引文献30

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部