期刊文献+

ML and MAP Channel Estimation for Distributed OneWay Relay Networks with Orthogonal Training

ML and MAP Channel Estimation for Distributed OneWay Relay Networks with Orthogonal Training
下载PDF
导出
摘要 In this letter,we investigate the individual channel estimation for the classical distributed-space-time-coding(DSTC) based one-way relay network(OWRN) under the superimposed training framework.Without resorting to the composite channel estimation,as did in traditional work,we directly estimate the individual channels from the maximum likelihood(ML) and the maximum a posteriori(MAP) estimators.We derive the closed-form ML estimators with the orthogonal training designing.Due to the complicated structure of the MAP in-channel estimator,we design an iterative gradient descent estimation process to find the optimal solutions.Numerical results are provided to corroborate our studies. In this letter,we investigate the individual channel estimation for the classical distributed-space-time-coding(DSTC) based one-way relay network(OWRN) under the superimposed training framework.Without resorting to the composite channel estimation,as did in traditional work,we directly estimate the individual channels from the maximum likelihood(ML) and the maximum a posteriori(MAP) estimators.We derive the closed-form ML estimators with the orthogonal training designing.Due to the complicated structure of the MAP in-channel estimator,we design an iterative gradient descent estimation process to find the optimal solutions.Numerical results are provided to corroborate our studies.
出处 《China Communications》 SCIE CSCD 2015年第12期84-91,共8页 中国通信(英文版)
基金 supported by the National Natural Science Foundation of China under Grant(61072067,61372076,61401332) the Postdoctoral Science Foundation of China (2014M552415) the Postdoctoral Science Special Foundation of China(2015T81006) the Programme of Introducing Talents of Discipline to Universities,China(Grant No. B08038)
关键词 posteriori iterative estimator likelihood relay descent variance assumed iteration posed 信道估计 正交设计 MAP 分布式 网络 中继 单向 训练
  • 相关文献

参考文献17

  • 1F. Gao, T. Cui and A. Nallanathan. On channel estimation and optimal training design for am- plify and forward relay networks[J]. IEEE Trans. Wireless Commun., 2008, 7(5): 1907-1914. 被引量:1
  • 2A. Lalos, A. Rontogiannis and K. Berberidis. Fre- quency domain channel estimation for coop- erative communication networks[J]. IEEE Trans. Signal Process., 2010, 58(6): 3400-3405. 被引量:1
  • 3J. Ma, P. Orlik, J. Zhang, et al. Pilot matrix design for estimating cascaded channels in two-hop MIMO amplify-and-forward relay systems[J]. IEEE Trans. Wireless Commun., 2011, 10(6): 1955-1965. 被引量:1
  • 4G. Okeke, W. Krzymien and Y. Jing. Beamform- ing in non-regenerative MIMO broadcast relay networks[J]. IEEE Trans. Signal Process., 2012, 60(12): 6641-6654. 被引量:1
  • 5M. Fadel, A. EI-Keyi and A. Sultan. Qos-con- strained mutliuser peer-to-peer ampli- fy-and-forward relay beamforming[J]. IEEE Trans. Signal Process., 2012, 60(3): 1397-1408. 被引量:1
  • 6C. Ho, R. Zhang and Y. Liang. Two-way relaying over OFDM: optimized tone permutation and power allocation[C]//in Proc. of IEEE ICC, May, 2008, Beijing, China. 被引量:1
  • 7Y. Li, W. Wang, J. Kong and M. Peng. Subcar- rier pairing for amplify-and-forward and de- code-and-forward OFDM relay links[J]. IEEE Commun. Lett., 2009, 13(4): 209-211. 被引量:1
  • 8C. Xing, S. Ma, Y.-C. Wu, et al. Transceiver design for dual-hop non-regenerative MIMO-OFDM relay systems under channel uncertainties[J]. IEEE Trans. Signal Process., 2010, 58(12): 6325- 6339. 被引量:1
  • 9O. Munoz-Medina, J. Vidal and A. Agustin. Lin- ear transceiver design in nonregenerative relays with channel state information[J]. IEEE Trans. Signal Process., 2007, 55(6): 2593-2604. 被引量:1
  • 10S. Zhang, F. Gao, C. Pei, et al. Segment training based individual channel estimation in one- way relay network with power allocation[J]. IEEE Trans. Wireless Commun., 2013, 12(3): 1300- 1309. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部