摘要
In this study,a mathematical model was developed to optimize the heat treatment process for maximum tensile strength and ductility of aluminum(8011) silicon carbide particulate composites.The process parameters are solutionizing time,aging temperature,and aging time.The experiments were performed on an universal testing machine according to centre rotatable design matrix.A mathematical model was developed with the main and interactive effects of the parameters considered.The analysis of variance technique was used to check the adequacy of the developed model.The optimum parameters were obtained for maximum tensile strength.Fractographic examination shows the cracks and dimples on the fractured surfaces of heat-treated specimen.
In this study, a mathematical model was developed to optimize the heat treatment process for maximum tensile strength and ductility of aluminum (8011) silicon carbide particulate composites. The process parameters are solutionizing time, aging temperature, and aging time. The experiments were performed on an universal testing machine according to centre rotatable design matrix. A mathematical model was developed with the main and interactive effects of the parameters considered. The analysis of variance technique was used to check the adequacy of the developed model. The optimum parameters were obtained for maximum tensile strength. Fractographic examination shows the cracks and dimples on the fractured surfaces of heat-treated specimen.