期刊文献+

Polyaniline Nanotube-ZnO Composite Materials: Facile Synthesis and Application 被引量:1

Polyaniline Nanotube-ZnO Composite Materials: Facile Synthesis and Application
下载PDF
导出
摘要 Polyaniline nanotubes and PANI-ZnO nanocomposites were prepared by the simplified Template-Free method. The experimental results indicated that the average diameter of Polyaniline nanotubes was approximately 150-200 nm. The average crystallite size of ZnO in PANI-ZnO composites was 27 nm. Moreover, the as-prepared samples were characterized by scanning electron microscopy(SEM), FT-IR spectroscopy(FTIR) and X-ray diffraction(XRD). Photocatalytic properties of the obtained samples were investigated by the photodegradation analysis of orange II and methylene orange dye. The as-prepared PANIZnO nanocomposites exhibited much higher photocatalytic activity than pure PANI nanotubes. During 2 h photocatalytic courses under UV irradiation, the degradation ratios of Orange II and methyl orange using PANIZnO nanocomposites were 90.3% and 84.5%, respectively. Furthermore, this method can be extended to prepare other organic-inorganic semiconductor composites based composite catalysts. Polyaniline nanotubes and PANI-ZnO nanocomposites were prepared by the simplified Template-Free method. The experimental results indicated that the average diameter of Polyaniline nanotubes was approximately 150-200 nm. The average crystallite size of ZnO in PANI-ZnO composites was 27 nm. Moreover, the as-prepared samples were characterized by scanning electron microscopy(SEM), FT-IR spectroscopy(FTIR) and X-ray diffraction(XRD). Photocatalytic properties of the obtained samples were investigated by the photodegradation analysis of orange II and methylene orange dye. The as-prepared PANIZnO nanocomposites exhibited much higher photocatalytic activity than pure PANI nanotubes. During 2 h photocatalytic courses under UV irradiation, the degradation ratios of Orange II and methyl orange using PANIZnO nanocomposites were 90.3% and 84.5%, respectively. Furthermore, this method can be extended to prepare other organic-inorganic semiconductor composites based composite catalysts.
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第6期1147-1151,共5页 武汉理工大学学报(材料科学英文版)
基金 Funded in Part by the Research Fund of Hubei Provincial Department of Education,China(Q20121102) the Open Research Program of Research Center of Green Manufacturing,Energy-saving and Emissionreduction,Wuhan University of Science and Technology(B1201)
关键词 polyaniline nanotube ZnO composites photocatalysis polyaniline nanotube ZnO composites photocatalysis
  • 相关文献

参考文献30

  • 1Tarek A, Gad A, Shigeru K. Role of Core Diameter and Silica Content in Photocatalytic Activity of TiO2/SiOJFe304 Composite[J]. Solid State Sciences, 2007, 9(8): 737-743. 被引量:1
  • 2Liu ZL, Deng JC, Deng J J, Li FF. Fabrication and Photocatalysis of CuO/ZnO Nano-composites Via a New Method[J]. Materials Science and Engineering B, 2008, 150(2): 99-104. 被引量:1
  • 3Wang ZH, Jiang TS, Du YM, et al. Synthesis of Mesoporous Titania and the Photocatalytic Activity for Decomposition of Methyl Orange[J]. Materials Letters, 2006, 60(2): 2 493-2 496. 被引量:1
  • 4Mora ES, Barojas EG, Rojas ER. Morphological, Optical and Photocatalytic Properties of TiO2-Fe203 Multilayers[J]. Solar Energy Materials andSolar Cells, 2007, 91(15): 1 412-1 415. 被引量:1
  • 5Augugliaro V, Litter M, Palmisano L. The Combination of Hetero- geneous Photocatalysis with Chemical and Physical Operations: A Tool for Improving the Photoprocess Performance[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2006, 7(4): 127-144. 被引量:1
  • 6Yu HG, Yu JG, Cheng B. Synthesis, Characterization and Photo- catalytic Activity of Mesoporous Titania Nanorod/Titanate Nanotube Composites[J]. Journal of Hazardous Materials, 2007, 147(1): 581-587. 被引量:1
  • 7Yong JN, Seok IN, Seok SK. Inverted Polymer Solar Cells Including ZnO Electron Transport Layer Fabricated by Facile Spray Pyrolysis[J]. Solar Energy Materials and Solar Cells, 2013, 117:139-144. 被引量:1
  • 8Shi RX, Yang P, Dong XB. Growth of Flower-like ZnO on ZnO Nanorod Arrays Created on Zinc Substrate Through Low-temperature Hydrothermal Synthesis[J]. Applied Surface Science, 2013, 264: 162- 170. 被引量:1
  • 9Ma SS, Li R, Lv CP, et al. Facile Synthesis of ZnO Nanorod Arrays and Hierarchical Nanostructures for Photocatalysis and GasSensor Applications[J]. Journal of Hazardous Materials, 2011, 192(2): 730- 740. 被引量:1
  • 10Lu JG, Chang P, Fan Z. Quasi-one-dimensional Metal Oxide Materials Synthesis, Properties and Applications[J]. Materials Science and Engineering R, 2006, 52(1): 49-91. 被引量:1

二级参考文献55

  • 1Kulesza J, Bochenska M. Eur. J. Inorg. Chem., 2011, 2011(6): 777-783. 被引量:1
  • 2Privett B J, Shin J H, Schoenfisch M H. Anal. Chem., 1010, 82(12):4723-4741. 被引量:1
  • 3Li X G, Ma X L, Huang M R. Talanta, 2009, 78(2) : 498-505. 被引量:1
  • 4Shokrollahi A, Abbaspour A, Ghaedi M,Haghighi A N, Kianfar A H, Ranjbar M. Talanta, 2011, 84(1) : 34-41. 被引量:1
  • 5Lai C Z, Fierke M A, Correa da Costa R, Gladysz J A, Stein A, Btihlmann P. Anal. Chem. , 2010, 82(18) : 7634-7640. 被引量:1
  • 6Miyake M, Chen L D, Pozzi G, Btihlmann P. Anal. Chem. , 2012, 84(2): 1104-1111. 被引量:1
  • 7Lindner E, Cosofret V V, Ufer S, Johnson T A, Ash R B, Nagle H T, Neuman M R, Buck R P. Fresenius J. Anal. Chem. , 1993, 346(6-9): 584-588. 被引量:1
  • 8Jaworska E, KisielA, MaksymiukK, Michalska A. Anal. Chem., 2011, 83(1): 438-445. 被引量:1
  • 9Konopk A,Sokalski T, Michalska A, Lewenstam A, Maj-Zurawska M. Anal. Chem., 2004, 76(21): 6410-6418. 被引量:1
  • 10Bobacka J, Lindfonrs T, McCarrick M, Lewenstam A, Ivaska A. Anal. Chem., 1995, 67(2): 3819-3823. 被引量:1

共引文献7

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部