期刊文献+

基于Gabor特征分解的高斯混合非线性图像滤波 被引量:2

Image Filtering of Gauss Mixed Nonlinear Based on Gabor Feature Decomposition
下载PDF
导出
摘要 通过图像滤波提高图像的分辨和识别能力,传统的图像滤波算法采用小波降噪方法,由于受到背景色噪声的干扰,小波分解中对低频图像参量的滤波性能不好。提出一种基于Gabor特征分解的高斯混合非线性图像滤波算法。首先进行图像平滑和小波分解预处理,沿梯度方向求得图像边缘信息,在尺度平移平面上进行小波特征分解,得到图像滤波过程中的Gabor小波变换系数,采用高斯混合非线性滤波算法实现图像滤波方法改进。仿真结果表明,采用该方法进行图像滤波,能有效抑制图像斑点噪声,提高图像的分辨性能,对边缘特征和细节的保持能力方面性能有优越,特别适用于对合成孔径雷达成像的滤波处理。 In order to improve the image resolution and recognition ability by image filtering, image filtering algorithm using the traditional wavelet denoising method, due to the interference of background color noise, wavelet decomposition in the fil-tering performance of low-frequency image parameters is not good. This paper puts forward a Gabor feature decomposition nonlinear image filtering algorithm based on Gauss mixture. Firstly, image smoothing preprocessing and wavelet decomposi-tion, obtained along the gradient direction information of image edge, wavelet decomposition characteristics in scale transla-tional plane, Gabor wavelet transform coefficients of image filtering process, using the Gauss hybrid nonlinear filtering algo-rithm and improved image filtering method. The simulation results show that, using the method of image filtering, can effec-tively suppress speckle noise in images, improve image resolution performance, with edge to edge features and details of the ability to maintain performance, especially suitable for synthetic aperture radar imaging processing.
作者 蔡敏
出处 《科技通报》 北大核心 2015年第12期64-66,共3页 Bulletin of Science and Technology
关键词 图像 滤波 小波变换 特征分解 image filter wavelet transform feature decomposition
  • 相关文献

参考文献5

二级参考文献66

  • 1HAUTIERE N, AUBERT D, DUMONT E, et al. Experimental val- idation of dedicated methods to in-vehicle estimation of atmospheric visibility distance [ J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(10) : 2218 -2225. 被引量:1
  • 2HUANG S-C, CHEN B-It, WANG W-J. Visibility restoration of single hazy images captured in real-world weather conditions [ J]. IEEE Transactions on Circuits and Systems for Video Teehnology, 2014, 24(10) : 1814 - 1824. 被引量:1
  • 3SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Instant de- hazing of image using polarization [ C]// CVPR 2001: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vi,,ion and Pattern Recognition. Washington, DC: IEEE Computer Socie- ty, 2001, 1:325-332. 被引量:1
  • 4NARASIMHAN S G, NAYAR S K. Chromatic framework for vision in bad weather [ C]// CVPR 2000: Proceedings of the 2000 IEEE Computer Society Conference on Computer Vision and Pattern Rec- ognition. Washington, DC: IEEE Computer Society, 2000, 1:598 -605. 被引量:1
  • 5HE K, SUN J, TANG X. Single image haze removal using dark chan- nel prior [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. 被引量:1
  • 6NEGRU M, NEDEVSCHI S. Image based fog detection and visibili- ty estimation for driving assistance systems [ C]//ICCP 2013: Pro- ceedings of the 2013 IEEE International Conference on Intelligent Computer Communication and Processing. Piscataway: IEEE, 2013: 163-168. 被引量:1
  • 7POMERLEAU D. Visibility estimation from a moving vehicte using the RALPH vision system [ C]// ITSC 1997: Proceedings of the 1997 IEEE Conference on Intelligent Transportation System. Pisca- taway: IEEE, 1997: 906-911. 被引量:1
  • 8HAUTIERE N, TAREL J-P, LAVENANT, et al. Automatic fog de- tection and estimation of visibility distance through use of an onboard camera [J]. Machine Vision and Applications, 2006, 17( 1):8 -20. 被引量:1
  • 9LIU J, FENG D. Two-dimensional muhi-pixel anisotropic Gaussian filter for Edge-Line Segment (ELS) detection [ J]. Image and Vi- sion Computing, 2014, 32(1) : 37 -53. 被引量:1
  • 10Sun Kang, Gong Xiu-rui, Wang Pan-shi, et al: A faust endmember extraction algorithm based on gram determinant[J]. IEEE Geoseience and Remote Sensin9 Letters, 2014, 11(6): 1124-1128. 被引量:1

共引文献56

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部