期刊文献+

结构向量自回归因果图的性质及应用

Property and Application of the Causal Graphs of Structure Vector Autoregressive Model
下载PDF
导出
摘要 文章利用图模型方法分析结构向量自回归模型变量间的因果性问题,构建结构向量自回归因果图,研究该因果图的性质,基于信息论方法建立了因果图结构辨识的三步准则,并用所给方法做了实例分析. This paper explores how to use graphical modelling approach to analyze the causal relations among variables of structure vector autoregressive model. The causal graphs of structure vector autoregressive model is established and its properties are investigated. A three-step procedure based on information theory criteria is developed to identify the causal structure of the causal graphs.Finally,a case analysis is presented using the propose method.
作者 魏岳嵩
出处 《淮北师范大学学报(自然科学版)》 CAS 2015年第4期1-4,共4页 Journal of Huaibei Normal University:Natural Sciences
基金 安徽省高校自然科学研究项目(KJ2015A035)
关键词 向量自回归模型 因果图 互信息 辨识 vector autoregressive model causal graphs mutual information identication
  • 相关文献

参考文献10

  • 1DAHLHAUS R,EICHLER M.Causality and graphical models in time series analysis[C]∥Highly structured stochastic sys-tems.Oxford:Oxford University Press,2003:115-137. 被引量:1
  • 2OXLEY L,REALE M,WILSON G T.Constructing structural VAR models with conditional independence graphs[J].Math-ematics and Computers in Simulation,2009,79:2910-2916. 被引量:1
  • 3EICHLER M.Graphical modelling of multivariate time series[J].Probability Theory and Related Fields,2012,153(2):233-268. 被引量:1
  • 4HYVARINEN A,ZHANG K,SHIMIZU S.Estimation of a structural vector autoregression model using non-Gaussianity[J].Journal of Machine Learning Research,2010,11:1709-1731. 被引量:1
  • 5PEARL J.Causality:models,reasoning and inference[M].Cambridge:Cambridge University Press,2000. 被引量:1
  • 6SPIRTES P,GLYMOUR C,SCHEINES R.Causation,prediction and search[M].New York:Springr-Verlag,2001. 被引量:1
  • 7HOOVER K.Automatic inference of the contemporaneous causal order of a system of equations[J].Econometric Theory,2005,21:69-77. 被引量:1
  • 8MONETA A.Graphical causal models and VARs:an empirical assessment of the real business cycles hypothesis[J].Em-pir Econ,2008,35:275-300. 被引量:1
  • 9魏岳嵩,田铮,肖艳婷.结构向量自回归模型因果图的信息论辨识方法[J].工程数学学报,2012,29(2):197-204. 被引量:1
  • 10FRAUMENI J.Cigarette smoking and cancer of the urinary track:Geographic variations in the United States[J].J of theNational Cancer Institut,1970,41:1205-1211. 被引量:1

二级参考文献11

  • 1Dahlhaus R. Graphical interaction models for multivariate time series[J]. Metrika, 2000, 51(2): 157-172. 被引量:1
  • 2Eichler M. Granger causality and path diagrams for multivariate time series[J]. Journal of Econometrics, 2007, 137(2): 334-353. 被引量:1
  • 3Oxley L, Reale M, Wilson G. Constructing structural VAR models with conditional independence graphs[J]. Mathematics and Computers in Simulation, 2009, 79(9): 2910-2916. 被引量:1
  • 4Spirtes P, Glymour C, Scheines R. Causation, Prediction and Search[M]. New York: Springr-Verlag, 2001. 被引量:1
  • 5Pearl J. Causality: Models, Reasoning and Inference[M]. Cambridge: Cambridge University Press, 2000. 被引量:1
  • 6Moneta A. Graphical causal models and VARs: an empirical assessment of the real business cycles hypoth- esis[J]. Empirical Economics, 2008, 35(2): 275-300. 被引量:1
  • 7Goria M, et al. A new class of random vector entropy estimators and its applications in testing statistical hypotheses[J]. Journal of Nonparametric Statistics, 2005, 17(3): 277-298. 被引量:1
  • 8Hall P, Morton S C. On the estimation of entropy[J]. Annals of the Institute of Statistical Mathematics, 2003, 45(1): 69-88. 被引量:1
  • 9Marschinski R, Kantz H. Analysing the information flow between financial time series an improved esti- mator for transfer entropy[J]. European Physical Journal B, 2002, 30(2): 275-281. 被引量:1
  • 10Prichard D, Theiler J. Generalized redundancies for time series analysis[J]. Physica D, 1995, 84(4): 476-493. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部