期刊文献+

基于T-S型模糊神经网络的空间结构GMM作动器主动控制 被引量:2

Active control of spatial structure based on GMM actuator and T-S type fuzzy neural network
下载PDF
导出
摘要 基于自主研发的超磁致伸缩材料(Giant Magnetostrictive Material,GMM)作动器的主动控制特性,应用T-S(Takagi-Sugeno)型模糊神经网络设计了主动控制系统,该系统以GMM作动器两端节点的相对速度和相对位移作为输入,计算输出控制电流。通过神经网络的自适应学习功能进行模糊划分及生成模糊规则,利用模糊系统的推理能力对空间结构模型进行基于地震响应的主动控制仿真,同时与标准型模糊神经网络系统进行仿真对比。结果表明,二者对空间结构模型的主动控制都能达到良好效果,基于T-S型模糊神经网络推理简单,其仿真速度远快于标准型。因此,采用T-S型模糊神经网络对空间结构进行主动控制更能满足工程应用需求。 Based on independently developed Giant Magnetostrictive Material( GMM) active control actuator,a Takagi-Sugeno( T-S) fuzzy neural network control system of a spatial structure was designed,in which the relative displacement and relative speed of two nodes at the end of the active-member were taken as inputs,and the output control current was calculated by the network. Taking advantage of the adaptive neural network learning function to achieve the fuzzy division and to generate fuzzy rules,an active control simulation of the spatial structure model under the action of seismic response by using the fuzzy reasoning capability,was carried out and the results were compared with the results produced by the simulation of a corresponding standard fuzzy neural network model. The results demonstrate that both the models can achieve good control effects,but the simulation speed of the T-S fuzzy neural network is far faster than the standard model. Therefore,the T-S fuzzy neural network controller can better meet the needs of engineering application requirements.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第24期1-6,11,共7页 Journal of Vibration and Shock
基金 国家自然科学基金(51178388 51108035) 国家重点实验室开放项目(08KF02) 陕西省工业攻关项目(2013K07-07 2014K06-34) 西安建筑科技大学创新团队资助项目
关键词 GMM作动器 模糊神经网络 主动控制 仿真 空间结构 GMM active control actuator fuzzy neural network active control simulation spatial structure
  • 相关文献

参考文献19

  • 1HOUSSEIN N, Kiefer-Kamal El-Hassania, HENG Hu, et al. Active vibration damping of composite structures using a nonlinear fuzzy controller[J]. Composite Structures, 2012, 94: 1385-1390. 被引量:1
  • 2FUJITANI H, MIDORIKAWA Y. Seismic response control tests and simulations by fuzzy optimal logic of building structures[J]. Engineering Structure, 1998, 20(3): 164-175. 被引量:1
  • 3POURZEYNALI S, H H LAVASANI A M. Active control of high rise building structures using fuzzy logic and genetic algorithms[J]. Engineering Structures, 2007, 26: 346-357. 被引量:1
  • 4GHABOUSSI J J A. Active control of structures using neural networks[J]. ASCE Journal of Engineering Mechanics Division, 1995, 151(4): 555-567. 被引量:1
  • 5欧进萍,王刚,田石柱.海洋平台结构振动的AMD主动控制试验研究[J].高技术通讯,2002,12(10):85-90. 被引量:27
  • 6李宏男,李宏宇,董松员.基于模糊神经网络系统的结构主动控制[J].沈阳建筑大学学报(自然科学版),2005,21(2):99-102. 被引量:7
  • 7侯淑萍,杨庆新,陈海燕,闫荣格,杨文荣.超磁致伸缩材料的特性及其应用[J].兵器材料科学与工程,2008,31(5):95-98. 被引量:23
  • 8F BRAGHIN S C, RESTA F. A model of magnetostrictive actuators for active vibration control[J]. Sensors and Actuators a: Physical, 2011, 165: 342-350. 被引量:1
  • 9OHMATA K, ZAKIKE M, KOH T. hree-link arm type vibration control device using magnetostrictive actuators[J]. Journal of Alloys and Compounds, 1997, 258(1): 74-78. 被引量:1
  • 10李琳,陈亮良,杨勇.超磁致伸缩作动器的结构分析[J].北京航空航天大学学报,2013,39(9):1269-1274. 被引量:16

二级参考文献41

共引文献127

同被引文献24

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部