期刊文献+

以泡沫镍为阴极的电芬顿法对苯酚的降解 被引量:7

Electro-Fenton degradation of phenol using foam nickel as cathode
原文传递
导出
摘要 电芬顿是一种高级氧化技术,其中电极材料对其处理效果有较为明显的影响。为提高电芬顿系统处理效率,选用泡沫镍电极作为阴极,以H_2O_2浓度为指标,探究了操作条件(p H、电流密度、曝气速率、电极间距)对其催化产H_2O_2性能的影响,并利用苯酚作为模拟污染物研究降解效果。实验结果表明,泡沫镍具备优异的阴极性能,其最佳工作条件为:p H=3,电流密度i=3 m A/cm^2,曝气量10 L/h,电极间距3 cm,在此条件下反应60 min后H_2O_2浓度可达45 mg/L。使用泡沫镍作为阴极降解苯酚废水,研究了Fe^(2+)投加量对去除率的影响。在最佳Fe^(2+)量(40 mg/L)下,反应2 h后苯酚及COD去除率分别达到95%和80%。其降解反应符合准一级动力学方程,表观反应速率常数最大可达5.0×10^(-4)s^(-1)。 Electro-Fenton is one of the advanced oxidation processes( AOPs),of which electrode material has a significant influence on the performance. To improve the efficiency of electro-Fenton,foam nickel was screened as cathode and electro-generated H2O2 was used to investigate the effects of operation parameters( pH,current density,air flow rate and distance between electrodes) on the catalytic performance. Results reveal that foam nickel is an excellent cathode material. The concentration of H2O2 could reach up to 45 mg/L within 60 min under optimal conditions( pH = 3,current density = 3 mA/cm^2,air flow rate = 10 L/h,3 cm between electrodes). Meanwhile,the effect of Fe^2 +dosage on phenol removal efficiency was studied. The removal rates of phenol and COD were 95% and 80%,respectively,with Fe^2 +dosage of 40 mg/L and electrolysis of 120 min.The degradation of phenol followed pseudo first order kinetics,and the maximum of apparent rate constant was determined as 5. 0 × 10^- 4)s^- 1.
出处 《环境工程学报》 CAS CSCD 北大核心 2015年第12期5843-5848,共6页 Chinese Journal of Environmental Engineering
基金 国家水体污染控制与治理科技重大专项(2012ZX07201-003)
关键词 电芬顿 泡沫镍 过氧化氢 羟基自由基 苯酚 electro-Fenton foam nickel hydrogen peroxide hydroxyl radical phenol
  • 相关文献

参考文献19

  • 1钟理,陈建军.高级氧化处理有机污水技术进展[J].工业水处理,2002,22(1):1-4. 被引量:95
  • 2肖华,周荣丰.电芬顿法的研究现状与发展[J].上海环境科学,2004,23(6):253-256. 被引量:40
  • 3Nidheesh P. V. , Gandhimathi R. Trends in electro-Fenton process for water and wastewater treatment: An overview. Desalination, 2012, 299:1-15. 被引量:1
  • 4Yang B. , Yu G. , Shuai D. M. Electrocatalytic hydrode- chlorination of 4-chlorobiphenyl in aqueous solution using palladized nickel foam cathode. Chemosphere, 2007, 67 (7) : 1361-1367. 被引量:1
  • 5Liu Wei, Ai Zhihui; Zhang Lizhi. Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment. Journal of Haz- ardous Materials, 2012, 243 : 257-264. 被引量:1
  • 6Ozcan A., ~ahin Y., Sava~ Koparal A., et al. Carbon sponge as a new cathode material for the eleetro-Fenton process: Comparison with carbon felt cathode and applica- tion to degradation of synthetic dye basic blue 3 in aqueous medium. Journal of Electroanalytical Chemistry, 2008, 616 (1-2) : 71-78. 被引量:1
  • 7Abdessalem A. K. , Oturan N. , Bellakhal N. , et al. Ex- perimental design methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron. Applied Catalysis B : Environmental, 2008, 78 (3-4) : 334-341. 被引量:1
  • 8Wang C. T., Chou W. L. , Chung M. H. , et al. COD removal from real dyeing wastewater by electro-Fenton tech- nology using an activated carbon fiber cathode. Desalina- tion, 2010, 253 ( 1-3 ) : 129-134. 被引量:1
  • 9Chu W. Modeling the quantum yields of herbicide 2, 4-Ddecay in UV/HzO2 process. Chemosphere, 2001, 44(5 ) : 935-941. 被引量:1
  • 10Qiang Zhimin, Chang J. H. , Huang C. P. Electrochemi- cal generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Research, 2002, 36( 1 ) : 85-94. 被引量:1

二级参考文献35

  • 1[1]Hardwick T J. The free radical mechanism in the reactions of hydrogen peroxide[J]. Can. J. Chem., 1957, 35(3): 428. 被引量:1
  • 2[2]Weiss J. Investigation on the Radical HO2 in Solution[J]. Trans. Faraday Soc., 1935, 31(3): 668. 被引量:1
  • 3[3]Prengle H W. Experimental Rate Constant and Reactor Considerations for the Destruction of Micropollutants and Trihalomethane Precursors by Ozone with UV Radiations[J].Environ. Sci. & Tech., 1983, 17(4): 743. 被引量:1
  • 4[4]Mattews R W. Photooxidation of Organic Material in Aqueous Suspensions of Titanium Dioxide[J]. Water Res., 1990,24(5): 653. 被引量:1
  • 5[5]Hoigne J ,Bader H. The Role of Hydroxyl Radical Reactions in Ozonation Processes in Aqueous Solutions[J]. Water Res., 1976, 10(2): 377. 被引量:1
  • 6[6]Glaze W H, Kang J W,Chapin D H. The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation[J]. Ozone Sci. & Eng., 1987, 9(4): 335. 被引量:1
  • 7[7]Pellon G R. Photochemical Reaction of Ozone in Solution[J]. Adv. Chem. Ser., 1989, 219(2): 639. 被引量:1
  • 8[8]Guittonneau S. The Chain Reactions Between Ozone and Hydrogen Peroxide[J]. Ozone Sci. & Eng., 1990, 12(1):73. 被引量:1
  • 9[9]Gurol M D , Vatistas R. Oxidation of Phenolic Compounds by Ozone and Ozone+ UV Radiation: A Comparative Study[J]. Water Res., 1987, 21(3): 895. 被引量:1
  • 10[10]Masten S J ,Butler J N. Ozone as Oxidant for Phenol Degradation in Aqueous Solution[J]. Ozone Sci. & Eng., 1986, 8(4): 339. 被引量:1

共引文献132

同被引文献65

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部