期刊文献+

Dirichlet空间D^H上Toeplitz算子

Toeplitz Operators on the Dirichlet Space D^H
下载PDF
导出
摘要 给出了Sobolev空间W_H^(1,2)(D)的一个直和分解,研究了Dirichlet空间D^H上Toeplitz算子的(半)交换性,得到了一个充要条件。给出了交换算子T_φT_ψ-T_ψT_φ及半交换算子T_φT_ψ-T_(ψφ)有有限秩的一个充要条件,证明了Dirichlet空间D^H上Toeplitz算子为紧算子当且仅当它是零算子。 In this paper we give Sobolev space W1H^2)( D) a direct sum decomposition. We study the( semi-) commutativity of Toeplitz operators on the Dirichlet space DH,which gets a necessary and sufficient condition. Then a necessary and sufficient condition is obtained about that the commutator TφTψ- TψTφor the semi-commutator TφTψ-Tψφhas finite rank. Finally we prove a Toeplitz operator on the Dirichlet space D-His a compact operator if and only if it is a zero operator.
作者 戴星超
出处 《宿州学院学报》 2015年第11期94-97,共4页 Journal of Suzhou University
基金 国家自然科学基金"多复变函数空间上的算子理论"(11271332)
关键词 SOBOLEV空间 DIRICHLET空间 TOEPLITZ算子 交换性 有限秩 紧算子 Sobolev space Dirichlet space Toeplitz operator commutativity finite rank compact operator
  • 相关文献

参考文献11

  • 1Adams R. Sobolev Space [M ]. New York: Academic Press, 1988 : 1-203. 被引量:1
  • 2Brown A,Halmos P R. Algebraic properties of Toeplitz operators[J]. J Reine Angew Math, 1964,213 : 89-102. 被引量:1
  • 3Axler S, Cuckovic. Commuting Toeplitz operators with harmonic symbols [J]. Integral Equations and Operator Theory, 1991,14 (1) : 1-12. 被引量:1
  • 4Duistermaat J J, LEE Y J. Toeplitz operators on the Dirichlet space[J]. Journal of Mathematical Analysis and Applications, 2004,300(1) : 54-67. 被引量:1
  • 5陈泳,徐辉明,于涛.Dirichlet空间上Toeplitz算子的交换性(Ⅱ)[J].数学年刊(A辑),2010,31(6):737-748. 被引量:2
  • 6Lee Y J. Algebraic properties of Toeplitz operators on the Dirichlet space[J]. Journal of Mathematical Analysis and Applications, 2007,329 (2) : 1316-1329. 被引量:1
  • 7Chen Yong. Commuting toeplitz operators on the dirichlet space. Journal of Mathematical Analysis and Applica- tions, 2009,357(1) :214-224. 被引量:1
  • 8Yu Tao. Toeplitz operators on the dirichlet space[J]. Inte- gral Equations and Operator Theory, 2010,67 (2) : 163-170. 被引量:1
  • 9Sheldon Axler. Sun Yung Chang and Donald Sarason, Products of Toeplitz operators,Integral Equations Opera- tor Theory 1 [J]. Integral Equations Operator Theory, 1978,1(3) 285-309. 被引量:1
  • 10Ding X ,Zheng D. Finite rank commutator of Toeplitz op- erators or Hankel operators[-J]. Houston J Math, 2008, 34 : 1099-1119. 被引量:1

二级参考文献14

  • 1Cao G F.Fredholm properties of Toeplitz operators on Dirichlet space[J].Pacific J Math,1999,188:209-224. 被引量:1
  • 2Duistermaat J J,Lee Y J.Toeplitz operators on the Dirichlet space[J].J Math Anal Appl,2004,300:54-67. 被引量:1
  • 3Lee Y J.Algebraic properties of Toeplitz operators on the Dirichlet space[J].J Math Anal Appl,2007,329:1316-1329. 被引量:1
  • 4Louhichi I,Zakarias L.On Toeplitz operators with quasihomogeneous symbols[J].Arch Math,2005,85:248-257. 被引量:1
  • 5Cuckovic Z,Rao N V.Mellin transform,monomial symbols and commuting Toeplitz operators[J].J Funct Anal,1998,154:195-214. 被引量:1
  • 6Chen Y.Commuting Toeplitz operators on the Dirichlet Space[J].J Math Anal Appl,2009,357:214-224. 被引量:1
  • 7Wu Z J.Hankel and Toeplitz operators on Dirichlet spaces[J].Integ Equ Oper Theory,1992,15:503-525. 被引量:1
  • 8Wu Z J.Operator theory and function theory on Dirichlet space[M]//Axler S,McCarthy J,Sarason D (eds).Holomorphic Spaces.Cambridge:Cambridge University Press,1998:179-199. 被引量:1
  • 9Luecking D H.Finite rank Toeplitz operators on the Bergman space[J].Proc Amer Math Soc,2008,136:1717-1723. 被引量:1
  • 10Brown A,Halmos P R.Algebraic properties of Toeplitz operators[J].J Reine Angew Math,1964,213:89-102. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部