期刊文献+

基于冗余小波变换的灰度多聚焦图像融合方法 被引量:4

Gray Multi-Focus Image Fusion Based on Redundant Wavelet Transform
下载PDF
导出
摘要 为弥补Mallat算法正交变换的缺陷以及获得更为有效的图像融合方法。文中给出了一种基于冗余小波变换的灰度多聚焦图像融合算法进行图像融合,选取不同焦点的灰度源图进行冗余小波变换。根据高低频系数特点,分别引入区域向量范数和局部对比度的概念,构建新的融合规则的算法。实验证明与其他融合算法相比文中算法具有更好的有效性与准确性。 This paper presents a gray multi-focus image fusion algorithm based on redundant wavelet transform for more efficient image fusion. Different focus gray source images are selected for redundant wavelet transform. The concepts of regional and local contrast vector norm of the construction of new fusion rules of arithmetic are introduced according to the characteristics of frequency coefficients respectively. Experiments show that the proposed method offers better efficiency and accuracy than other fusion algorithms.
出处 《电子科技》 2015年第12期100-103,共4页 Electronic Science and Technology
关键词 图像融合 冗余小波变换 多聚焦 区域向量范数 局部对比 image fusion redundant wavelet transform multi-focus regional vector norm local contrast
  • 相关文献

参考文献10

  • 1Zhong Zhang, Rick S Blum. A categorization of muhiscale - decomposition -based image fusion schemes with a perform- ance study for a digitial camera application [J]. Proceeding of the IEEE, 1999,87 (8) : 1315 - 1326. 被引量:1
  • 2Sweldens W. The lifting scheme:a construction of second generation wavelets [ J]. SIAM Journal of Mathematical A- nalysis, 1997,29 (2) :511 - 546. 被引量:1
  • 3Bijiaoui A,Strack J L, Murtagh F. Restauration des images multi - e chelles par - l'algorithme a trous [ J ]. Traitement du Signal, 1994,11 ( 3 ) :229 - 243. 被引量:1
  • 4Chibni Y. Muhisource image fusion by using the redundant wavelet decomposition [J]. PROC. on IEEE Internatinal Geosci- ence and Remote Sensing SymPosium,2003 (2) : 1383 - 1885. 被引量:1
  • 5张强 郭宝龙.基于非下采样的多聚焦图像融合.信号处理,2009,89(7):1334-1346. 被引量:3
  • 6陆欢,吴庆宪,姜长生.基于PCA与小波变换的彩色图像融合算法[J].计算机仿真,2007,24(9):202-205. 被引量:13
  • 7Prella G. A general framework for muhiresolution image fu- sion: from pixels to regions [J]. Information fusion, 2003 (4) :258 -280. 被引量:1
  • 8刘贵喜,刘纯虎,凌文杰.一种基于小波多分辨率分解的图像融合新算法[J].光电子.激光,2004,15(3):344-347. 被引量:32
  • 9Huntsberger T, Jawerth B. Wavelet based sensor fusion [ J ]. Hangzhou : Proceeding of SPIE, 1993. 被引量:1
  • 10Peli E. Contrast in complex images [ J ]. Optical Society of A- merica, 1990,17 (10) : 2032 - 2041. 被引量:1

二级参考文献12

  • 1B P J urt,R J Kolczynski.Enhanced image capture through fusion[C].IEEE Proceeding of 4th International Conference on Computer Vision,Berlin,Germany,1993.173 -182. 被引量:1
  • 2A Toet.Image fusion by ratio of low-pass pyramid[J].Pattern recognition.1989,9(4):245 -253. 被引量:1
  • 3H Li,B S Manjunath,S Mitra.Multisensor image fusion using the wavelet transform[J].Graphical Models and Image Process.1995,57(3):235 -245. 被引量:1
  • 4St Li,T K James,Y N Wang.Multifocus image fusion using artificial neural networks[J].Pattern Recognition Letters.2002,23(8):985 -997. 被引量:1
  • 5S G Mallat.A theory for multi-resolution signal decomposition:the wavelet representation[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1989,11 (7):674-693. 被引量:1
  • 6A Laine,J Fan.Frame Representation for Texture Segmentation[J].IEEE Transactions on Image Processing.1996,5(5):771-780. 被引量:1
  • 7S Sharma.Applied Multivariate Techniques[M].Wiley,1996. 被引量:1
  • 8R A Johnson and D W Wichern.Applied Multivariate Statistical Analysis[M].Fourth Edition,Prentice-Hall,1998. 被引量:1
  • 9李树涛,王耀南,张昌凡.基于视觉特性的多聚焦图像融合[J].电子学报,2001,29(12):1699-1701. 被引量:40
  • 10李树涛,王耀南,龚理专.多聚焦图像融合中最佳小波分解层数的选取[J].系统工程与电子技术,2002,24(6):45-48. 被引量:30

共引文献45

同被引文献31

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部