期刊文献+

基于MMAS的MIMO-OFDM系统上行多用户检测 被引量:2

Max-min ant system algorithm for uplink multi-user detection in MIMO-OFDM system
原文传递
导出
摘要 在多输入多输出-正交频分复用(multiple input multiple output-orthogonal frequency division multiplexing,MIMO-OFDM)系统上行多用户检测(multi-user detection,MUD)中,针对基本蚁群算法(ant colony optimization,ACO)在搜索过程中易出现过早停滞及收敛于局部最优解等问题,提出一种基于最大最小蚁群系统(max-min ant system,MMAS)的MUD新算法。该算法在蚁群每次循环结束后,仅处于最优路径上的单只蚂蚁释放信息素;同时,通过限制每条路径上信息素的取值范围,避免路径间信息素的差值过大,从而使蚂蚁在每次循环时尽可能地选择不同的路径,提高算法的搜索能力。仿真结果表明,MMAS算法能够有效降低蚁群陷入局部最优解的概率,进而提高了检测性能;同时,随用户数的增加,该算法的计算复杂度却远低于最大似然(maximum likelihood,ML)检测算法,因此,该算法能够在检测性能与计算复杂度之间取得较好的折中。 For the uplink multi-user detection( MUD) in MIMO-OFDM systems,the basic ant colony optimization( ACO)algorithm is prone to premature stagnation and converges to a local optimum during the search process. In the paper,a new algorithm based on Max-Min Ant System( MMAS) was proposed,in which only one ant on the optimal path releases pheromone after each iteration. At the same time,the algorithm avoids the excessive pheromone between different paths then the ant chooses different paths as far as possible for each iteration. For these reasons,the search ability of the algorithm is effectively improved. Simulation results show that the MMAS algorithm can reduce the probability of the ant colony converge to a local optimal solution effectively,and then the detection performance is improved. At the same time,the computational complexity of the algorithm is far below the maximum-likelihood( maximum likelihood,ML) detection algorithm with the number of users increased. All in all,the algorithm can get a better tradeoff between detection performance and computational complexity.
作者 高维 景小荣
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2015年第6期745-750,共6页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家科技重大专项(2014ZX03001009-003)~~
关键词 多输入多输出正交频分复用系统 多用户检测 最大最小蚂蚁系统 信息素 multiple input multiple output-orthogonal frequency division multiplexing system multi-user detection max-min ant system pheromone
  • 相关文献

参考文献17

  • 1FOSCHINI G J, GANS M J. On limits of wireless com- munications in a fading environment when using multiple antennas [ J ]. Wireless personal communications, 1998, 6(3) : 311-335. 被引量:1
  • 2HWANG T, YANG C, WU G, et al. OFDM and its wireless applications : a survey [ J ]. Vehicular Technolo- gy, IEEE Transactions on, 2009, 58(4) : 1673-1694. 被引量:1
  • 3JIANG M, HANZO L. Multiuser MIMO-OFDM for next- generation wireless systems [ J ]. Proceedings of the IEEE, 2007, 95(7) : 1430-1469. 被引量:1
  • 4VERDU S. Multiuser detection [ M ]. USA : Cambridge university press, 1998. 被引量:1
  • 5ZHU X, MURCI-/R D. Performance analysis of maximum likelihood detection in a MIMO antenna system [ J ]. Communications, IEEE Transactions on, 2002, 50 (2) : 187-191. 被引量:1
  • 6SIRITEANU C, MIYANAGA Y, BLOSTEIN S D, et al. MIMO zero-forcing detection analysis for correlated and estimated Ricianfading[ J ]. Vehicular Technology, IEEE Transactions on, 2012, 61(7) : 3087-3099. 被引量:1
  • 7LU L Y, XIAO Y, ZHANG S. MMSE space-time multi- user detection in MIMO-OFDM system [ C ]//Signal Pro- cessing, ICSP 2008.9th International Conference[ s. 1. ] : IEEE, 2008: 1884-1887. 被引量:1
  • 8LIU J S, TANG B H, WANG Y C, et al. A novel multi- user detection algorithm for CDMA-based MIMO-OFDM system[ J ]. the journal of china universities of posts and telecommunications, 2006, 13 (2). 90-94. 被引量:1
  • 9STUDER C, FATEH S, SEETHALER D. ASIC imple- mentation of soft-input soft-output MIMO detection using MMSE parallel interference cancellation [ J ]. Solid-State Circuits, IEEE Journal of, 2011,46(7) : 1754-1765. 被引量:1
  • 10俞洋,殷志锋,田亚菲.基于自适应人工鱼群算法的多用户检测器[J].电子与信息学报,2007,29(1):121-124. 被引量:37

二级参考文献6

  • 1李晓磊,路飞,田国会,钱积新.组合优化问题的人工鱼群算法应用[J].山东大学学报(工学版),2004,34(5):64-67. 被引量:162
  • 2Verdu S. Minimum probability of error for asynchronous Gaussian multiple-access channels. IEEE Trans. on Inform Theory, 1986, 32(1): 85-96. 被引量:1
  • 3Lu Z S and Yan S.. Multiuser detector based on particle swarm slgorithm. Proceedings of the IEEE 6th Circuits and Systems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless Communication, Shanghai, May 2004,Vol.2: 783-786. 被引量:1
  • 4Zhao Y and Zheng J I. Particle swarm optimization algorithm in signal detection and blind extraction. Proceedings of the 7th International Symposium on Parallel Architectures,Algorithms and Networks, Hong Kong, May 2004: 37-41. 被引量:1
  • 5Ergun C and Hacioglu K. Multiuser detection using a genetic algorithm in CDMA communications systems. IEEE Trans.on Commun., 2000, 48(8): 1374-1383. 被引量:1
  • 6李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38. 被引量:879

共引文献36

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部