期刊文献+

基于暗原色先验的无人机遥感图像去雾算法 被引量:1

UAV Remote Sensing Image Dehazing Algorithm Based on the Dark-Channel
下载PDF
导出
摘要 无人机航拍、测绘等技术以其诸多优点,得到越来越广泛的应用。但在部分地区因天气条件或大气污染等因素雾、霾天较多,使得采集的图像严重降质。针对该问题,提出一种基于物理模型的无人机遥感图像去雾算法。首先,通过比较无人机遥感图像和普通景物图像,归纳无人机遥感图像的主要特点,根据这些特点并结合现有一些去雾算法的优点,给出了大气光矢量的模、大气光矢量的方向、全局透射率等去雾参数的计算方法。实验结果显示,该算法能够在多个指标上取得较好的效果。这表明该算法有效可行。 UAV aerial photography, mapping and other technologies, are being more and more widely used for their specific advantages. But in some areas, more fog or haze days severely degrade the images because of weather conditions or atmospheric pollution or other factors. For this problem, proposes the UAV remote sensing image dehazing algorithm based on the dark-channel. First, by compared the UAV remote sensing image with the general scene image, summarizes the main features of the UAV remote sensing image. Then, according to these features and combining the advantages of these algorithms, gets the methods of computing the airlight orientation, airlight magnitude and global transmission. The results show that, the proposed algorithm can achieve nice effect on multiple indicators. It means that our algorithm is effective and feasible.
出处 《现代计算机(中旬刊)》 2015年第11期46-49,共4页 Modern Computer
基金 国家自然科学基金项目(No.41161065) 贵州省科学技术厅 贵州师范大学联合科技基金资助项目(黔科合J字LKS[2013]28号)
关键词 去雾 无人机遥感图像 大气光矢量方向 大气光矢量模 全局透射率 Dehazing UVA Remote Sensing Image Airlight Orientation Airlight Magnitude Transmission
  • 相关文献

参考文献12

  • 1Oakley J P, Bu H. Correction of Simple Contrast Loss in Color Images[J]. IEEE Transactions on Image Processing, 2007, 16 (2): 511- 522. 被引量:1
  • 2He K M, Sun J, Tang X O. Single Image HAZE Removal Using Dark Channel Prior[J]. IEEE Transactions on Pattern Analysis and Ma- chine, 2011, 33( 12): 2341-2353. 被引量:1
  • 3He K M, Sun J, Tang X O. Guided Image Filtering[J]. IEEE Transactions on Pattern Analysis and MA, 2013, 35 (6): 1397-1409. 被引量:1
  • 4He K M, Sun J. Fast Guided Fiher[EB/OL]. (2015-05-05)[2015-06-21]. http://arxiv.org/pdf/1505.00996vl.pdf. 被引量:1
  • 5Sulami M, Glatzer I,Fattal R, Werman M. Automatic Recovery of the Atmospheric Light in Haze Images[C]. Computational Photography 2CP), 2014 IEEE Intern.Santa Clara, CA, 2014:1-11. 被引量:1
  • 6Fattal R. Single Image Dehazing[J]. A CM Transactions on Graphics, 2008, 27 (3): 1-9. 被引量:1
  • 7Fattal R. Dehazing Using Color-Lines[J]. ACM Transactions on Graphics, 2009, 28(4): 1-14. 被引量:1
  • 8Zhu R, Wang L J. Improved Wavelet Transform Algorithm for Single Image Dehazing[J]. Optik-International Journal for Light & Elec- tron, 2014, 125 ( 13 ):3064-3306. 被引量:1
  • 9李菊霞,余雪丽.雾天条件下的多尺度Retinex图像增强算法[J].计算机科学,2013,40(3):299-301. 被引量:28
  • 10陈炳权,刘宏立.基于全变分Retinex及梯度域的雾天图像增强算法[J].通信学报,2014,35(6):139-147. 被引量:18

二级参考文献53

共引文献298

同被引文献2

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部