期刊文献+

基于大数据算法的纳税遵从风险识别以及影响因子分析 被引量:7

Tax Compliance Risk Identification and Impact Factor Analysis under the“Big Data”Algorithm
原文传递
导出
摘要 "大数据战略"给税务数据分析工作带来了新的机遇。基于中国S省房地产业的税务登记、申报征收、财务报表等涉税数据,利用计算机学习建立纳税遵从风险模型,识别出风险等级,运用关联规则算法将影响纳税遵从风险的因子精确到收入、成本和费用等财务指标上。研究表明,"机器学习+关联规则"组合算法,支持规模超大、关系错综复杂的数据信息,可以有效识别纳税遵从风险等级并深度挖掘造成不同纳税遵从风险的原因,该方法的普适性对微观数据、复杂数据和大数据的分析具有参考价值。 The strategy of "big data" has brought new opportunities to the tax data analysis work, we have studied the real estate industry in S Province of China. By establishing a tax compli- ance risk model using the machine learning method, we have identified the risk level of taxpayers. We then set up a quantitative analysis model, which includes the latest technology and combines the taxation and economy reality of China, by using association rule algorithm and expressing enterpri- ses" tax compliance risks as financial indicators such as incomes, costs and expenses. Results show that the combination "machine learning + association rules" algorithm, support the large scale and complex relationship between the collection of data and information, can effectively identify tax compliance risk grade and the depth of mining the cause of different tax compliance risk. The com- bined use of the above algorithm has the reference value for micro data, complex data, data analy- sis.
作者 孙存一 赵瑜
出处 《现代财经(天津财经大学学报)》 CSSCI 北大核心 2015年第11期46-59,共14页 Modern Finance and Economics:Journal of Tianjin University of Finance and Economics
基金 国家自然科学基金项目(71373267)
关键词 大数据 风险识别 机器学习 关联规则 Big Data Risk Identification Machine Learning Association Rules
  • 相关文献

参考文献9

  • 1Nicolai, Meinshausen. Quantile Regression Forests I-J]. Journal of Machine Learning Research. 2006,7 . 980--999. 被引量:1
  • 2Nolan D,Speed T. Stat Labs. Mathematical statistics through Applications[J]. Springer. 2000. 被引量:1
  • 3http.//baike. baidu, corn/link? url~ t6EFwZBtEeeP VdQsfdPOpc2t-- O6rGqM8EdtP7vaql F2GGvS7RIw NjGbdcRA8x219HRnzqBFWDF-- omCrvUzMfla, 中国百度网,2015. 被引量:1
  • 4Yanchang. R and Data Mining~ Examples and CaseStudies[-M]. Singapore: Academic Press : 2012. 被引量:1
  • 5陈赤军著..税务评估审计概论[M].北京:机械工业出版社,2010:360.
  • 6方匡南著..随机森林组合预测理论及其在金融中的应用[M].厦门:厦门大学出版社,2012:228.
  • 7谭荣华,焦瑞进.关于大数据在税收工作中应用的几点认识[J].税务研究,2014(9):3-5. 被引量:35
  • 8涂子沛.TheBigDataRevolution[M].桂林:广西师范大学出版社,2013. 被引量:2
  • 9吴喜之..复杂数据统计方法[M],2013.

二级参考文献3

  • 1中国互联网络信息中心第33次中国互联网络发展状况统计报告[EB/OL].(2014-01-16)[2014-02-20].http://roll.sohu.com/20140116/n393648870.shtml. 被引量:3
  • 2浙江大学(译).美国白宫“大数据”白皮书[EB/OL].(2014-05-30)[2014-07-08].http://www.cstor.cn/textdetail-6822.html. 被引量:1
  • 3张遥,王政“双十一”收官:阿里系成交额350,19亿元支付宝188亿笔支付创纪录[EB/OL].(2013-11-12)[2014-07-08].http://newsxinhuanet.com/fortune/2013-11/12/c-118103503.htm. 被引量:1

共引文献34

同被引文献45

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部