摘要
According to theory of constraints( TOCs), the performance of a complex manufacturing system,such as a wafer fabrication system,is mainly determined by its bottleneck machine.A method of the identification and prediction of the bottleneck machine was proposed in transient states of a system. Firstly,the bottleneck index was formulated based on the workloads and the variability in wafer fabrication systems. Secondly, main factors causing the variability and their influences on the bottleneck machine in transient states of the system were analyzed and discussed. An effective bottleneck identification and prediction model was presented,which incorporated the variability and queuing theory,and took machine breakdowns and setups into considerations.Finally,the proposed bottleneck prediction method was verified by simulation experiments. Results indicate that the proposed bottleneck prediction method is feasible and effective.
According to theory of constraints( TOCs), the performance of a complex manufacturing system,such as a wafer fabrication system,is mainly determined by its bottleneck machine.A method of the identification and prediction of the bottleneck machine was proposed in transient states of a system. Firstly,the bottleneck index was formulated based on the workloads and the variability in wafer fabrication systems. Secondly, main factors causing the variability and their influences on the bottleneck machine in transient states of the system were analyzed and discussed. An effective bottleneck identification and prediction model was presented,which incorporated the variability and queuing theory,and took machine breakdowns and setups into considerations.Finally,the proposed bottleneck prediction method was verified by simulation experiments. Results indicate that the proposed bottleneck prediction method is feasible and effective.
基金
National Natural Science Foundations of China(Nos.61273035,71471135)