期刊文献+

介度中心和PageRank算法应用场景分析

Application Scenarios Analysis of Betweenness Centraliy and PageRank Algorithms
下载PDF
导出
摘要 在复杂网络中,一般按照需求选取合适的关键点发现算法,常用的关键点发现算法分别是介度中心算法和PageRank算法。为了在特定应用场景下选取合适的关键点发现算法,选择7种不同类型网络下的16个真实数据集,分析比较介度中心算法和PageRank算法在这些数据集上得到的关键点集合的差异,总结出2种关键点发现算法的应用场景。实验结果表明,介度中心算法适用于对整个网络影响力较大的关键点应用场景,PageRank算法适用于某个领域内熟知度较高的关键点应用场景。 To find the key vertex in the discovery of complex network has important significance in practical applications,the most commonly used algorithms are the key points found in the betweenness centrality algorithm and PageRank algorithm.It chooses the suitable algorithm based on need.The development of network is diversity,and it is important to choose the suitable algorithm in specific application.This paper tests and analyzes 16 graphs under 7 type networks.It is found that these two algorithms have different application scenarios,the key mediator of the center point of general algorithm generally has an important impact on the whole network of points,while the impact of key points PageRank algorithm on the entire network is relatively small.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第12期299-304,共6页 Computer Engineering
基金 国家"973"计划基金资助项目(2011CB302504) 国家"863"计划基金资助项目(2012AA010902 2015AA011505) 国家自然科学基金资助项目(61402445)
关键词 关键点 介度中心算法 PAGERANK算法 差异 领域 应用场景 key vertex betweenness centrality algorithm PageRank algorithm difference field application scenarios
  • 相关文献

参考文献25

  • 1Page L, Brin S, Motwani R. The PageRank Citation Ranking:Bringing Order to the Web [ EB/OL]. (2001- 10-30). http ://www-diglib. stanford, edu/diglib/pub. 被引量:1
  • 2Brandes U. A Faster Algorithm for Betweenness Centrality [ J ]. Journal of Mathematical Sociology, 2001, 25(2) :163-177. 被引量:1
  • 3Madduri K,Ediger D, Jiang K, et al. A Faster Parallel Algorithm and Efficient Multithreaded Implementations for Evaluating Betweenness Centrality on Massive Datasets[ C ]//Proceedings of IEEE International Sym- posium on Parallel and Distributed Processing. Washington D. C. ,USA :IEEE Press ,2009 : 1-8. 被引量:1
  • 4Haveliwala T. Efficient Computation of PageRank[EB/OL ]. (2001 - 10-30). http ://www-diglib. stanford, edu/diglib/pub. 被引量:1
  • 5Liu Xiaoming, Bollen J, Nelson M L, et al. Co- authorship Networks in the Digital Library Research Community[ J]. Information Processing & Management, 2005,41 ( 6 ) : 1462-1480. 被引量:1
  • 6Lusseau D, Schneider K, Boisseau O J. Learning to Discover Social Circles in Ego Networks [ C ]//Pro- ceedings of Conference on Neural Information Processing Systems. South Lake Tahoe, USA : [ s. n. ], 2012:548-556. 被引量:1
  • 7王敏,王蕾,冯晓兵,等.基于顶点加权的介度中心近似算法[C]//中国高性能计算学术年会论文集.广州:[出版者不详],2014:160-170. 被引量:1
  • 8Nelson D L, McEvoy C L, Schreiber T. A. The University of South Florida Word Association, Rhyme, and Word Fragment Norms [ EB/OL]. ( 1999-12-30 ). http ://www. usf. edu/FreeAssociation. 被引量:1
  • 9Tang Lei, Liu Huan. Relational Learning via Latent Social Dimensions[ C ]//Proceedings of the 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA : ACM Press, 2009 : 817-826. 被引量:1
  • 10Lei Tang, Liu Huan. Scalable Learning of Collective Behavior Based on Sparse Social Dimensions[ C ]// Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York, USA: ACM Press, 2009 : 1-33. 被引量:1

二级参考文献28

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部