期刊文献+

板翅式换热器锯齿型翅片参数的遗传算法优化研究 被引量:24

Optimization Design for Offset Fin in Plate Heat Exchanger with Genetic Algorithm
下载PDF
导出
摘要 针对目前锯齿型板翅式换热器未能同时优化多参数,或者大多优化研究存在对经验关联式依赖的问题,提出了利用Kriging响应面来近似目标函数与设计变量之间的关系、应用遗传算法对锯齿型板翅式换热器翅片结构参数的优化方法。在维持翅片通道雷诺数为800时,把换热器的最大j因子、最小f因子和最大F_(TEF)因子作为3个单目标函数,对翅片的翅片高度h、翅片间距s、翅片厚度t和翅片节距l进行了优化研究。研究结果表明:翅片高度h与翅片间距s对换热器综合性能F_(TEF)因子呈正增长,而翅片厚度t和翅片节距l呈负增长;在翅片高度为9.5mm、翅片间距为2.2mm、翅片厚度为0.1mm和翅片节距为3mm时,换热器性能最佳;结合Kriging响应面的遗传算法克服了传统优化方法对经验关联式的依赖。该研究结果可以指导锯齿型板翅式换热器的优化设计。 In the current optimization for plate fin heat exchanger with offset fins,simultaneous multi-parameter optimization is rarely considered,or researches usually depend on empirical relations.A strategy by genetic algorithm(GA)combined with Kriging response surface is proposed,where the Kriging response surface provides an approximate relationship between the objective function and design variables.The fin height h,fin space s,fin thickness t and interrupted length j of offset fins are taken as four optimization parameters,while maximumj factor,minimumffactor and maximumF_(TEF)factor as three single objective functions at Reynolds number of 800.The results show that the effects of the fin height and fin space on the overall performance F_(TEF)factor are positive and the effects of the fin thickness and the interrupted length are negative;the heat exchanger performance reaches the optimum as fin height h=9.5mm,fin space s=2.1 mm,fin thickness t=0.1 mm and interrupted length l=3 mm;the genetic algorithm combined with Kriging response surface eliminates the dependence on empirical rela-tions.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2015年第12期90-96,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(51106119 81100707) 中央高校基本科研业务费专项资金资助项目
关键词 板翅式换热器 遗传算法 Kriging响应面 优化设计 plate-fin heat exchanger genetic algorithm Kriging response surface optimization design
  • 相关文献

参考文献21

  • 1SHAH R K,WEBB L.Compact and enhanced heat exchangers:heat exchangers theory and practice[M].Washington,DC,USA:Hemisphere,1983:425-468. 被引量:1
  • 2HOLLAND J H.Outline for a logical theory of adaptive systems[J].Journal of the Association for Computing Machinery,1962,9(3):297-314. 被引量:1
  • 3PENG H,LING X.Optimal design approach for the plate-fin heat exchangers using neural networks cooperated with genetic algorithms[J].Appl Therm Eng2008,28(5/6):642-650. 被引量:1
  • 4XIE G N,SUNDEN B,WANG Q W.Optimization of compact heat exchangers by agenetic algorithm[J].Appl Therm Eng,2008,28(8/9):895-906. 被引量:1
  • 5谢公南,王秋旺.遗传算法在板翅式换热器尺寸优化中的应用[J].中国电机工程学报,2006,26(7):53-57. 被引量:28
  • 6郭江峰,许明田,程林.基于(火积)耗散数最小的板翅式换热器优化设计[J].工程热物理学报,2011,32(5):827-831. 被引量:13
  • 7MISHRA M,DAS P K,SUNIL S.Second law based optimization of crossflow plate-fin heat exchanger design using genetic algorithm[J].Appl Therm Eng,2009,29(14):2983-2989. 被引量:1
  • 8GHOLAP A K,KHAN J A.Design and multi-objective optimization of heat exchangers for refrigerators[J].Applied Energy,2007,84(12):1226-1239. 被引量:1
  • 9HILBERT R,JANIGA G,BARON R,et al.Multiobjective shape optimization of a heat exchanger using parallel genetic algorithms[J].Int J of Heat Mass Transfer,2006,49(15/16):2567-2577. 被引量:1
  • 10NAJAFI H,NAJAFI B,HOSEINPOORI P.Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm[J].Appl Therm Eng,2011,31(10):1839-1847. 被引量:1

二级参考文献23

共引文献38

同被引文献188

引证文献24

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部