期刊文献+

温度梯度区域熔化对Al-Cu-Mg合金第二相析出及其性能的影响 被引量:2

Effects of Temperature-Gradient Zone Melting on the Precipitation and Properties of Al-Cu-Mg Alloy
原文传递
导出
摘要 采用SEM、EPMA、TEM以及显微硬度测试等手段,研究了温度梯度区域熔化(TGZM)对Al-Cu-Mg合金溶质原子浓度分布、第二相析出以及显微硬度的影响。研究表明:TGZM导致晶界两侧基体中的溶质原子浓度存在显著差异,靠近铸锭边部一侧基体的Cu、Mg溶质原子浓度明显高于靠近铸锭心部一侧基体的溶质原子浓度。在485℃的均匀化处理过程中,晶界两侧晶粒靠近边部一侧有大量第二相析出,而靠近心部一侧则很少或者几乎没有第二相析出。该现象致使同一晶界两侧区域的显微硬度值存在明显差别,并且这种差别无法通过长时间的均匀化处理得以完全消除,在微观上加剧了合金不同区域性能的差异。 The effects of TGZM(temperature-gradient zone melting) on the solute concentration distribution,precipitation behavior and microhardness of Al-Cu-Mg alloy have been investigated by scanning electron microscopy,transmission electron microscopy and microhardness testing.The result shows that the solute concentration distributions of the alloy are quite different between two sides of grain boundary(GB).The solute concentrations of Cu and Mg are obviously higher on the side of GB which is toward the edge side of ingot.During homogenization treatment at 485 ℃,precipitation behaviors of the alloy between two sides of GB are also extremely different.On the edge side,quantities of precipitates appear,while on the center side,there is hardly any precipitate.This leads to the remarkably higher microhardness values on the side of GB which is toward the edge side of ingot.These discrepancies can not be completely eliminated even after homogenized at 485 ℃ for 1000 h.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2015年第11期2768-2774,共7页 Rare Metal Materials and Engineering
基金 国家重大基础研究项目(2012CB619506) 国家自然科学基金青年基金(51405153 51475162) 湖南省自然科学基金(14JJ5015)
关键词 温度梯度区域熔化 均匀化 析出相 显微硬度值 temperature-gradient zone melting homogenization precipitate microhardness
  • 相关文献

参考文献29

  • 1Rettenmayr M. Int Mater Rev[J], 2009, 54:1. 被引量:1
  • 2Thi H N, Reinhart G, Buffet A et al. J Cryst Growth[J], 2008, 310:2906. 被引量:1
  • 3BOsenberg U, Buchmann M, Rettenmayr M. J Cryst Growth[J], 2007, 304:281. 被引量:1
  • 4Whitman W G. Am J Sci[J], 1926, i I : 126. 被引量:1
  • 5Li B, Brody H D, Kazimirov A. Metall Mater Trans A[J], 2006, 37:1039. 被引量:1
  • 6Ujihara T, Fujiwara K, Sazaki Get al. J Cryst Growth[J], 2002, 242:313. 被引量:1
  • 7Yoshikawa T, Morita K. J Electrochem Soc[J], 2003, 150:G465. 被引量:1
  • 8Buchmann M, Rettenmayr M..I Cryst Growth[J], 2005, 284 544. 被引量:1
  • 9Pfann W G. Trails AIME[J], 1955, 203:961. 被引量:1
  • 10Tiller WA. JApplPhys[J], 1963, 34:2757. 被引量:1

二级参考文献28

  • 1Abdel A. Materials Science and Engineering A[J], 2009, 500: 176. 被引量:1
  • 2Hattestrand M, Andren H. Acta Materialia[J], 2001, 49:2123. 被引量:1
  • 3Somoza A, Macchi C E, Lumley R Net al. Physical Status Solidi Current Topics in Solid State Physics[J], 2007, 4(10): 3473. 被引量:1
  • 4Marsha van Dalen E, David N. Acta Materialia[J], 2008, 56: 4369. 被引量:1
  • 5Nakajima T, Takeda M, Endo Y. Materials Science and Engineering A [J], 2004, 387-389:670. 被引量:1
  • 6Wang J, Wu X, Xia K. Materials Science and Engineering A[J], 1997, 498:287. 被引量:1
  • 7Walsh J, Jata K, Starke J. Acta Metal[J], 1989, 37(11): 2861. 被引量:1
  • 8Zhen Ziqia(郑子樵).Materials Science and Engineering(材料科学基础)[M].Changsha:Central South University Press,2005:97. 被引量:1
  • 9Hart E. Acta Metallurgica[J], 1957, 5(10): 597. 被引量:1
  • 10Wang S, Starink M. Acta Materialia[J], 1999, 47(15): 3987. 被引量:1

共引文献21

同被引文献22

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部