期刊文献+

近红外光谱结合判别分析法初步鉴别食用植物油的质量 被引量:2

Primary Quality Identification of Edible Vegetable Oil by Near-Infrared Spectroscopy and Discriminant Analysis
下载PDF
导出
摘要 以过氧化值为参考,用偏最小二乘判别分析(PLSDA)和最小二乘支持向量机(LSSVM)两种方法对食用植物油的近红外光谱进行建模和预测,初步鉴别食用植物油的质量。分析了数据中心化、方差比例、正交信号校正这三种不同的前处理方法对PLSDA预测结果的影响。对同种划分训练集和验证集方法的PLSDA,数据中心化的预测结果都较好。同时分析了Kennard-stone(KS)法及SPXY法这两种不同的划分训练集和验证集方法对PLSDA和LSSVM的预测结果的影响,结果表明训练集和验证集的划分方法对两者影响均较小。实验比较了PLSDA与LSSVM两种方法的判别能力,结果显示在以过氧化值为参考的基础上,两种方法判别能力相近,最高判别总正确率均达到94.3%。 On the basis of peroxide value,partial least squares discriminant analysis(PLSDA)and least squares support vector machines(LSSVM)were used to model and predict the near-infrared(NIR)spectra of edible vegetable oils;then the quality of edible vegetable oils was primarily identified.Firstly,three different pretreatment methods(mean center,variance scaling,and orthogonal signal correction)were applied to PLSDA,and the effect of pretreatment was studied.For the same selection method of PLSDA,the prediction results of mean center were all preferable.Moreover,the predicted results by PLSDA and LSSVM were analyzed for two different selection of calibration set methods,Kennard-stone and SPXY(Sample Set Partitioning Based On Joint X-Y Distance)selection,and it showed that the influence on both PLSDA and LSSVM were all mild.Finally,PLSDA and LSSVM were compared,and the results showed that the discriminant abilities of both were similar on the basis of the peroxide value as the reference method and the best overall accuracy rate of both PLSDA and LSSVM was 94.3%.
出处 《分析科学学报》 CAS CSCD 北大核心 2015年第6期763-768,共6页 Journal of Analytical Science
基金 广东省教育厅产学研结合项目(No.2007A090302100)
关键词 近红外光谱 偏最小二乘判别分析 最小二乘支持向量机 食用植物油 过氧化值 Near-infrared spectroscopy Least squares support vector machines Partial least squares discriminant analysis Edible vegetable oil Peroxide value
  • 相关文献

参考文献26

二级参考文献45

  • 1LU Wan-zhen(陆婉珍).Modern Near Infrared Spectroscopy Analysis Technique(现代近红外光谱分析技术)[M].Beijing(北京):China Petrochemical Press(中国石化出版社),2000:5. 被引量:1
  • 2Williams P C, Preston K R, Norris P M, et al. Journal of Food Science[J], 1984:49(1):17. 被引量:1
  • 3Emilio Marengo, Marco Bbba, et al. Analytica Chimica Acta[J], 2004,511:313. 被引量:1
  • 4The Pharmacopoeia of the People’s Republic of China(中华人民共和国药典一部)[M]. Bieijing(北京):Chemical In-dustry Press(化学工业出版社),2005:348. 被引量:1
  • 5HUANG Hui-feng,ZHANG Yu, YANG Rui,TANG Xing. Journal of Chromatography B[J] ,2008,874:77. 被引量:1
  • 6SUN Chen,XIE Yu-chun, LIU Hui-zhou. Chin J Chem Eng[J] ,2007 ,15(4):474. 被引量:1
  • 7WANG Zhi-ping(王治平),FAN Hua(樊化),MENG Xiaang-ping(孟祥平),LI Jiu-xiang(李久香),WANG Yi-Fei(王一飞).中成药[J],2005 ,27(10):附 6. 被引量:1
  • 8JIANG Yong,DAVID B,TU Peng-fei,Barbin Y. Analytica Chimica Acta[J],2010,657(1):9. 被引量:1
  • 9Boiret M,Loic M,Ginot Y M. Journal of Pharmaceutical and Biomedical Analysis[J] ?2011,54(3):510. 被引量:1
  • 10CHU Xiao-li(猪小立). Molecular Spectroscopy Analytical Technology Combined with Chemometrics and Its Applica-tions(化学计量学方法与分子光谱分析技术)[M]. Beijing(北京):Chemical Industry Press(化学工业出版社),2011:262. 被引量:1

共引文献22

同被引文献23

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部