期刊文献+

基于人工蜂群改进的BP神经网络移动用户行为分析及预测方法 被引量:5

Improved BP Neural Network Algorithm Based on Artificial Bee Colony of Mobile User Behavior Analysis and Forecasting
下载PDF
导出
摘要 如何根据不同的用户行为,来为移动用户提供精准的个性化服务是目前移动应用服务开发技术发展的主流。为解决BP神经网络建模算法收敛速度慢及预测不准确问题,提出基于人工蜂群算法改进的BP神经网络算法。为测试改进后算法的准确性,采用Matlab编程进行试验仿真,通过黑盒子测试方法输出预测的用户行为和实际的用户行为。在18次预测中只有2次预测失败,预测成功率达80%以上。为了验证改进的BP神经网络算法的效率,采用初始总群数为1000,进行了收敛性测试。试验结果表明:基于人工蜂群算法改进的BP神经网络算法可以有效的提高移动用户行为分析的效率和准确性,对在使用移动用户行为分析模型构建过程中,准确定位用户上网需求,提升企业在营销中的竞争力具有非常重要的意义。 It is the mainstream of development technology for current mobile application service to provide accurate and personalized service for mobile users based on different users' behavior. This paper proposes an algorithm to improve BP neural network based on artificial bee colony in order to solve BP neural network algorithm slow convergence and inaccurate prediction. To test the accuracy of the improved algorithm, this paper uses Matlab programming experiment simulation. This paper outputs prediction and the actual user behavior through the black box testing method. Only twice were failed in 18 times forecast and the success rate was more than 80%.In order to validate the efficiency of the improved BP neural network algorithm, this paper tests the convergence by initializing total group number 1000. Results showed that the improved BP neural network algorithm based on artificial colony algorithm could effectively improve the efficiency and accuracy of the mobile user behavior analysis. It is very important to locate user's demand to Internet accurately and promote the power of competition in the marketing of enterprises during the process of the construction of analysis model based on the mobile users' behavior.
出处 《沈阳农业大学学报》 CAS CSCD 北大核心 2015年第6期757-761,共5页 Journal of Shenyang Agricultural University
基金 国家科技支撑计划项目(2012BAJ26B00) 北京农业信息技术研究中心开放课题项目(2013)
关键词 BP神经网络 人工蜂群 移动用户行为 分析预测 MATLAB BP neural network artificial bee colony mobile user behavior analysis and forecasting Matlab
  • 相关文献

参考文献20

二级参考文献114

共引文献123

同被引文献70

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部