期刊文献+

Constructions on Approximately Mutually Unbiased Bases by Galois Rings 被引量:3

Constructions on Approximately Mutually Unbiased Bases by Galois Rings
原文传递
导出
摘要 Several new series of approximately mutually unbiased bases are constructed by using Gauss sums and Jacobi sums over Galois rings GR(p2, r), and the tensor method.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第6期1440-1448,共9页 系统科学与复杂性学报(英文版)
基金 supported by the Natural Science Foundation of China under Grant No.61370089 the Tsinghua National Laboratory for Information Science and Technology by the Fundamental Research Funds for the Central Universities under Grant No.JZ2014HGBZ0349 by Science and Technology on Information Assurance Lab.KJ-12-01
关键词 MUB Galois rings Gauss sums Jacobi sums tensor method 基础 公正 环结构 Galois环 张量方法 雅可比 高斯和
  • 相关文献

参考文献1

二级参考文献15

  • 1Armand M A. A note on interleaved Reed-Solomon codes for Galois ring. IEEE Trans Inform Theory, 2010, 56: 1574-1581. 被引量:1
  • 2Feng T. A new construction of perfect nonlinear functions using Galois rings. J Combin Design, 2009, 17:229-239. 被引量:1
  • 3Hammons J A R, Kumav P V, Calderbank A R, et al. The Z4-1inearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans Inform Theory, 1994, 40:301-319. 被引量:1
  • 4Hellesth T, Kumar P V, Shanbhag A. Exponential sums over Galois rings and their applications. In: Cohen S, Niederreiter H, eds. Finite Fields and Their Applications, Cambridge: Cambridge University Press, 1996, 109-128. 被引量:1
  • 5Hou X D, Leung K H, Xiang Q. New partial difference sets in Zt2 and a related problem about Galois rings. Finite Fields Appl, 2001, 7:165-188. 被引量:1
  • 6Kumar P V, Helleseth T, Calderbank A R. An upper bound for Weil exponential sums over Galois rings and applica- tions. IEEE Trans Inform Theory, 1995, 41:456-468. 被引量:1
  • 7Kumar P V, Helleseth T, Calderbank A R, et al. Large families of quaternary Sequences with low correlation. IEEE Trans Inform Theory, 1996, 42:579-592. 被引量:1
  • 8Kwon T R, Yoo W S. Remarks on Gauss sums over Galois rings. Korean J Math, 2009, 17:43-52. 被引量:1
  • 9Li J, Zeng X Y, Hu L. A new family of quadriphase sequences with low correlations. In: Lecture Notes in Computer Science, vol. 6639. New York: Springer, 2011, 246-262. 被引量:1
  • 10Li J, Zeng X Y, Tang X H, et al. A family of quadriphase sequences of period 4(2n - 1) with low correlation and large linear span. Des Codes Cryptogr, 2013, 66:19-35. 被引量:1

同被引文献1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部